基于QLearning强化学习的机器人避障和路径规划matlab仿真

简介: 本文介绍了使用MATLAB 2022a进行强化学习算法仿真的效果,并详细阐述了Q-Learning原理及其在机器人避障和路径规划中的应用。通过Q-Learning算法,机器人能在未知环境中学习到达目标的最短路径并避开障碍物。仿真结果展示了算法的有效性,核心程序实现了Q表的更新和状态的可视化。未来研究可扩展至更复杂环境和高效算法。![](https://ucc.alicdn.com/pic/developer-ecology/nymobwrkkdwks_d3b95a2f4fd2492381e1742e5658c0bc.gif)等图像展示了具体仿真过程。

1.算法仿真效果
matlab2022a仿真结果如下(完整代码运行后无水印):

1.gif
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg
7.jpeg

2.算法涉及理论知识概要
强化学习是一种机器学习方法,它使智能体能够在与环境交互的过程中学习如何采取行动以最大化累积奖励。Q-Learning是一种无模型的强化学习算法,特别适合于离散动作空间的问题。在机器人避障和路径规划中,Q-Learning可以帮助机器人学习如何在未知环境中寻找到达目标的最短路径,同时避免碰撞障碍物。

2.1 Q-Learning原理
Q-Learning是一种基于价值迭代的算法,其目标是找到一个策略,使得在给定状态下选择的动作能够最大化未来累积奖励的期望值。该算法的核心在于更新Q表(也称为Q函数),Q表记录了在每个状态下采取不同动作所能获得的最大累积奖励的估计值。

   Q-Learning的基本更新规则如下:

0e25a8d0589debe03727fd7da4af7387_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   为了确保算法能够探索所有可行的策略,Q-Learning通常采用ε-greedy策略来进行探索与利用的平衡:

8fb16299dc83b59f34e87ce063f33cb5_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.2 机器人避障和路径规划
状态可以定义为机器人相对于目标和障碍物的位置。例如,如果机器人在一个二维网格世界中移动,那么状态可以由机器人当前位置的坐标表示:

a9da981ec8b42636ef9ec96e8ceeea18_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   动作可以定义为机器人可以采取的不同移动方向。例如,在二维网格中,机器人可以有四个基本动作:上、下、左、右。

1b68f9e39d6fa5a74f6ed214ef3711a3_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

奖励函数的设计对于引导机器人学习正确的行为至关重要。一种简单的奖励函数设计如下:

1518b6faab6fc255a580db0eb7f902b3_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

接下来,机器人开始在一个虚拟环境中学习。在每个时间步骤 t:

观测状态:机器人观测当前状态st​。
选择动作:根据ε-greedy策略选择动作 at​。
执行动作:机器人执行动作 at​,进入新的状态 st+1​ 并获得奖励rt​。
更新Q表:根据Q-Learning更新规则更新Q表。
重复:回到步骤1,直到达到终止条件。
基于Q-Learning的机器人避障和路径规划是一种有效的解决方案。通过不断学习和更新Q表,机器人可以学会如何在复杂环境中规划路径并避免碰撞障碍物。未来的研究方向可以包括引入更多的状态特征、使用连续动作空间的强化学习算法(如DQN或DDPG)等,以应对更加复杂的环境和更高的计算效率需求。

3.MATLAB核心程序``` % 更新Q表
Qtab(Start_randm,Acts_temp) = (1-Lrr)Qtab(Start_randm,Acts_temp) + Lrr(Rwd + gamma * Nmax);

    % 更新状态
    Start_randm = s_n;

    % 可视化新状态
    xx             = ceil(Start_randm/Scales);
    yy             = Start_randm - (xx-1)*Scales;
    Env_cur        = Map_mat;
    Env_cur(xx,yy) = 4;

    if mod(m,100)==1
        imagesc(Env_cur);
    end

    m = m + 1;
    if m > Lmv
       flager2 = 0;
    end
    if Start_randm == Goal
       flager2 = 0;
    end
end

% 绘制Q表均值变化图
figure;
plot(epsilon2);
xlabel('训练迭代次数');
ylabel('Q收敛值');
% 保存数据
save data.mat Env Qtab Start0
0Z_008m

```

相关文章
|
1月前
|
机器学习/深度学习 传感器 安全
基于模糊神经网络的移动机器人路径规划matlab仿真
该程序利用模糊神经网络实现移动机器人的路径规划,能在含5至7个静态未知障碍物的环境中随机导航。机器人配备传感器检测前方及其两侧45度方向上的障碍物距离,并根据这些数据调整其速度和方向。MATLAB2022a版本下,通过模糊逻辑处理传感器信息,生成合理的路径,确保机器人安全到达目标位置。以下是该程序在MATLAB2022a下的测试结果展示。
|
3月前
|
数据可视化 机器人 Python
实例8:机器人的空间描述和变换仿真
本文是关于机器人空间描述和变换的仿真实验教程,通过Python编程和可视化学习,介绍了刚体的平动和转动、位姿描述、坐标变换等基础知识,并提供了具体的实验步骤和代码实现。实验目的是让读者通过编程实践,了解和掌握空间变换的数学原理和操作方法。
44 2
实例8:机器人的空间描述和变换仿真
|
3月前
|
XML 传感器 数据可视化
09 机器人仿真Gazebo实例
本文详细介绍了在ROS(机器人操作系统)中使用Gazebo进行机器人仿真的流程,包括安装Gazebo、创建URDF模型、使用xacro优化URDF、配置ROS_control以及为模型添加Gazebo属性和控制器插件,并提供了相应的示例代码。
127 0
|
6月前
|
传感器 人工智能 监控
智能耕耘机器人
智能耕耘机器人
131 3
|
3天前
|
机器学习/深度学习 传感器 算法
智能机器人在工业自动化中的应用与前景###
本文探讨了智能机器人在工业自动化领域的最新应用,包括其在制造业中的集成、操作灵活性和成本效益等方面的优势。通过分析当前技术趋势和案例研究,预测了智能机器人未来的发展方向及其对工业生产模式的潜在影响。 ###
23 9
|
1月前
|
人工智能 搜索推荐 机器人
挑战未来职场:亲手打造你的AI面试官——基于Agents的模拟面试机器人究竟有多智能?
【10月更文挑战第7天】基于Agent技术,本项目构建了一个AI模拟面试机器人,旨在帮助求职者提升面试表现。通过Python、LangChain和Hugging Face的transformers库,实现了自动提问、即时反馈等功能,提供灵活、个性化的模拟面试体验。相比传统方法,AI模拟面试机器人不受时间和地点限制,能够实时提供反馈,帮助求职者更好地准备面试。
40 2
|
3月前
|
人工智能 算法 机器人
机器人版的斯坦福小镇来了,专为具身智能研究打造
【8月更文挑战第12天】《GRUtopia:城市级具身智能仿真平台》新论文发布,介绍了一款由上海AI实验室主导的大规模3D城市模拟环境——GRUtopia。此平台包含十万级互动场景与大型语言模型驱动的NPC系统,旨在解决具身智能研究中的数据稀缺问题并提供全面的评估工具,为机器人技术的进步搭建重要桥梁。https://arxiv.org/pdf/2407.10943
210 60
|
6月前
|
自然语言处理 机器人 Go
【飞书ChatGPT机器人】飞书接入ChatGPT,打造智能问答助手
【飞书ChatGPT机器人】飞书接入ChatGPT,打造智能问答助手
354 0
|
3月前
|
机器人 C# 人工智能
智能升级:WPF与人工智能的跨界合作——手把手教你集成聊天机器人,打造互动新体验与个性化服务
【8月更文挑战第31天】聊天机器人已成为现代应用的重要组成部分,提供即时响应、个性化服务及全天候支持。随着AI技术的发展,聊天机器人的功能日益强大,不仅能进行简单问答,还能实现复杂对话管理和情感分析。本文通过具体案例分析,展示了如何在WPF应用中集成聊天机器人,并通过示例代码详细说明其实现过程。使用Microsoft的Bot Framework可以轻松创建并配置聊天机器人,增强应用互动性和用户体验。首先,需在Bot Framework门户中创建机器人项目并编写逻辑。然后,在WPF应用中添加聊天界面,实现与机器人的交互。
91 0

热门文章

最新文章