Python 和 Go 实现 AES 加密算法的技术详解

本文涉及的产品
密钥管理服务KMS,1000个密钥,100个凭据,1个月
性能测试 PTS,5000VUM额度
简介: Python 和 Go 实现 AES 加密算法的技术详解

AES(Advanced Encryption Standard,高级加密标准)是一种对称密钥加密算法,广泛应用于各种安全通信场景中。AES 使用 128、192 或 256 位的密钥,能够提供不同级别的安全性。本文将详细讲解如何使用 Python 和 Go 来实现 AES 加密算法,提供代码示例并对其进行逐步解析。


1. 什么是 AES 加密算法


AES 是由美国国家标准与技术研究院(NIST)于 2001 年选定的对称密钥加密标准。其特性如下:

对称性:加密和解密使用相同的密钥。

分组加密:将明文数据分为若干个分组,每组 128 位(16 字节),然后逐个分组加密。

安全性:AES 目前被认为是非常安全的加密算法之一,适用于大多数应用。


AES 使用三种不同的密钥长度:128 位、192 位和 256 位。加密的强度随着密钥长度的增加而提高,密钥越长,难度越大。


2. AES 加密的工作原理


AES 加密是基于分组的加密算法,通常工作在不同的模式下,包括:

ECB(Electronic Codebook,电子密码本)模式:每个分组独立加密。缺点是明文分组相同,加密后密文也相同,不推荐使用。

CBC(Cipher Block Chaining,密文分组链接)模式:每个分组的加密依赖于前一个分组的密文和初始化向量(IV),安全性更高。

CFB(Cipher Feedback,密文反馈)模式:类似流模式的加密方式,安全性较高。

GCM(Galois/Counter Mode,伽罗瓦/计数器模式):在计数器模式的基础上增加了身份验证功能,非常适合高安全性需求的场景。


AES 加密和解密的过程包括以下步骤:

1.生成密钥(Key)。

2.初始化向量(IV,适用于需要 IV 的模式,比如 CBC)。

3.对明文进行分组。

4.使用选定的模式对每个分组进行加密。

5.合并加密结果并输出密文。


3. 使用 Python 实现 AES 加密


Python 提供了多种加密库,其中最常用的是 pycryptodome 库,它提供了 AES 加密的全面支持。


3.1 环境配置


首先,安装 pycryptodome 库:

pip install pycryptodome


3.2 Python 示例代码


我们将使用 CBC 模式来实现 AES 加密,示例如下:

from Crypto.Cipher import AES
from Crypto.Util.Padding import pad, unpad
from Crypto.Random import get_random_bytes

# 生成密钥和初始化向量
key = get_random_bytes(16)  # 16 字节的密钥(128 位)
iv = get_random_bytes(16)   # 16 字节的 IV

# 加密函数
def aes_encrypt(plaintext):
    cipher = AES.new(key, AES.MODE_CBC, iv)
    padded_text = pad(plaintext.encode('utf-8'), AES.block_size)
    ciphertext = cipher.encrypt(padded_text)
    return ciphertext
    
# 解密函数
def aes_decrypt(ciphertext):
    cipher = AES.new(key, AES.MODE_CBC, iv)
    padded_plaintext = cipher.decrypt(ciphertext)
    plaintext = unpad(padded_plaintext, AES.block_size)
    return plaintext.decode('utf-8')
    
# 示例使用
plaintext = "Hello, AES in Python!"
ciphertext = aes_encrypt(plaintext)
print(f"密文: {ciphertext}")

# 解密
decrypted_text = aes_decrypt(ciphertext)
print(f"解密后的明文: {decrypted_text}")


3.3 代码详解


1.生成密钥和 IV:get_random_bytes(16) 用于生成 16 字节(128 位)的随机密钥和初始化向量(IV)。CBC 模式要求 IV 必须与密钥的长度相同。

2.加密过程:

使用 AES.new() 初始化 AES 加密对象,指定模式为 AES.MODE_CBC 并传入密钥和 IV。

使用 pad() 方法对明文进行填充,使其长度为 AES 的分组大小的倍数(16 字节)。

使用 encrypt() 方法对填充后的明文进行加密。

3.解密过程:

使用与加密时相同的密钥和 IV 初始化 AES 解密对象。

使用 decrypt() 方法对密文进行解密,得到填充后的明文。

使用 unpad() 方法去除填充,恢复原始明文。


4. 使用 Go 实现 AES 加密


Go 语言中使用 crypto/aes 和 crypto/cipher 包可以轻松实现 AES 加密。


4.1 环境配置


Go 标准库已经包含了 AES 加密所需的包,无需额外安装。


4.2 Go 示例代码


下面是使用 Go 实现 AES-CBC 模式的代码:

package main

import (
  "crypto/aes"
  "crypto/cipher"
  "crypto/rand"
  "crypto/sha256"
  "encoding/hex"
  "fmt"
  "io"
)

// 生成 32 字节的密钥(256 位 AES)
func generateKey() []byte {
  key := sha256.Sum256([]byte("mysecretpassword"))
  return key[:]
}

// AES 加密函数
func aesEncrypt(plaintext string, key []byte) (string, error) {
  block, err := aes.NewCipher(key)
  if err != nil {
  return "", err
  }
  
  ciphertext := make([]byte, aes.BlockSize+len(plaintext))
  iv := ciphertext[:aes.BlockSize]
  
  // 生成随机 IV
  if _, err := io.ReadFull(rand.Reader, iv); err != nil {
  return "", err
  }
  
  stream := cipher.NewCBCEncrypter(block, iv)
  stream.CryptBlocks(ciphertext[aes.BlockSize:], []byte(plaintext))
  
  return hex.EncodeToString(ciphertext), nil
}

// AES 解密函数
func aesDecrypt(cipherHex string, key []byte) (string, error) {
  ciphertext, _ := hex.DecodeString(cipherHex)
  block, err := aes.NewCipher(key)
  if err != nil {
  return "", err
  }
  
  iv := ciphertext[:aes.BlockSize]
  ciphertext = ciphertext[aes.BlockSize:]
  
  stream := cipher.NewCBCDecrypter(block, iv)
  stream.CryptBlocks(ciphertext, ciphertext)
  
  return string(ciphertext), nil
}

func main() {
  plaintext := "Hello, AES in Go!"
  
  // 生成密钥
  key := generateKey()
  
  // 加密
  ciphertext, err := aesEncrypt(plaintext, key)
  if err != nil {
  fmt.Println("加密错误:", err)
  return
  }
  fmt.Println("加密后的密文:", ciphertext)
  
  // 解密
  decryptedText, err := aesDecrypt(ciphertext, key)
  if err != nil {
  fmt.Println("解密错误:", err)
  return
  }
  fmt.Println("解密后的明文:", decryptedText)
}



4.3 代码详解


1.生成密钥:使用 sha256.Sum256() 方法生成 256 位的密钥。

2.加密过程:

使用 aes.NewCipher() 方法创建 AES 加密块,要求密钥长度为 16、24 或 32 字节。

生成随机 IV,并创建 CBC 加密器 cipher.NewCBCEncrypter()。

使用 CryptBlocks() 方法对明文进行加密,并将结果编码为十六进制字符串输出。

3.解密过程:

读取 IV 并使用与加密相同的密钥创建解密器 cipher.NewCBCDecrypter()。

使用 CryptBlocks() 解密密文,返回解密后的明文。


5. Python 与 Go 实现的性能比较


5.1 性能测试


我们可以通过对 Python 和 Go 的 AES 实现进行相同条件下的性能测试来评估它们的执行效率。

加密时间:Go 通常比 Python 更快,主要得益于其编译型语言的特性和更好的内存管理。

易用性:Python 的库提供了更高层次的抽象,代码简洁,而 Go 需要更多的手动管理操作。


5.2 结果对比


为了对比 Python 和 Go 在 AES 加密上的性能,我们可以对相同大小的数据进行加密和解密操作,并测量它们的耗时。

假设我们使用相同的硬件环境进行实验,处理 1 MB 的数据,并分别记录 Python 和 Go 的执行时间。

# Python AES 性能测试
import time

# 加密性能测试
start_time = time.time()
for _ in range(100):
    aes_encrypt("A" * 1024 * 1024)
end_time = time.time()
print(f"Python 加密 100 次的总时间: {end_time - start_time} 秒")

# 解密性能测试
start_time = time.time()
for _ in range(100):
    aes_decrypt(ciphertext)
end_time = time.time()
print(f"Python 解密 100 次的总时间: {end_time - start_time} 秒")


在 Go 中,我们可以使用类似的方式进行性能测试:

package main

import (
  "fmt"
  "time"
)

func performanceTest() {
  plaintext := "A" * 1024 * 1024  // 1 MB 数据
  key := generateKey()
  
  // 加密性能测试  
  start := time.Now()
  for i := 0; i < 100; i++ {
  _, err := aesEncrypt(plaintext, key)
  if err != nil {
    fmt.Println("加密错误:", err)
    return
  }
  }
  fmt.Printf("Go 加密 100 次的总时间: %v\n", time.Since(start))
  
  // 解密性能测试  
  ciphertext, _ := aesEncrypt(plaintext, key)
  start = time.Now()
  for i := 0; i < 100; i++ {
  _, err := aesDecrypt(ciphertext, key)
  if err != nil {
    fmt.Println("解密错误:", err)
    return
  }
  }
  fmt.Printf("Go 解密 100 次的总时间: %v\n", time.Since(start))
}


性能分析


1.执行速度:通常,Go 的 AES 加密执行时间会比 Python 更快,因为 Go 是编译型语言,直接生成机器代码,执行效率更高。而 Python 是解释型语言,运行时的动态解析会消耗额外的时间。

2.内存管理:Python 的内存管理相对更自动化,开发者可以专注于应用逻辑,而不需要过多考虑内存泄露等问题。然而,这种自动化也会带来额外的开销。相比之下,Go 的内存管理机制更为直接和轻量,因此在处理大数据加密时,其性能表现更加出色。

3.代码复杂度:从代码编写的角度来看,Python 的加密库提供了更多高级封装,使得代码更加简洁和易于理解。Go 由于其系统级语言的特性,代码通常需要更详细的管理步骤,比如 IV 的生成和加密块的显式管理。


6. 总结


在这篇文章中,我们通过实例演示了如何使用 Python 和 Go 来实现 AES 加密算法,并对它们的性能进行了比较。我们得出以下结论:

Python 实现:使用 pycryptodome 库实现 AES 加密相对简单,代码易于阅读和编写,非常适合需要快速实现安全加密的场景。然而,Python 的执行速度相对较慢,不适合需要高性能的场合。

Go 实现:Go 的标准库中提供了 AES 加密功能,虽然实现上需要更多的代码和手动管理,但其执行效率高,适合处理需要高性能的加密任务。


选择建议


对于开发速度要求较高的项目,建议使用 Python 实现 AES 加密,特别是在安全需求较高但性能需求不太关键的情况下,Python 提供了非常方便的库和简单的代码。

对于需要处理大量加密数据、要求高性能的场景,Go 的 AES 实现更加适合,因为 Go 语言能更好地利用系统资源,并且其编译特性使得执行效率更高。


AES 加密作为对称加密的核心算法之一,在 Python 和 Go 中都有出色的支持。根据项目的具体需求,可以灵活选择合适的语言和实现方式。


目录
相关文章
|
6天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
20 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
16天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
109 66
|
6天前
|
存储 算法 Serverless
剖析文件共享工具背后的Python哈希表算法奥秘
在数字化时代,文件共享工具不可或缺。哈希表算法通过将文件名或哈希值映射到存储位置,实现快速检索与高效管理。Python中的哈希表可用于创建简易文件索引,支持快速插入和查找文件路径。哈希表不仅提升了文件定位速度,还优化了存储管理和多节点数据一致性,确保文件共享工具高效运行,满足多用户并发需求,推动文件共享领域向更高效、便捷的方向发展。
|
13天前
|
算法 安全 Go
Go 语言中实现 RSA 加解密、签名验证算法
随着互联网的发展,安全需求日益增长。非对称加密算法RSA成为密码学中的重要代表。本文介绍如何使用Go语言和[forgoer/openssl](https://github.com/forgoer/openssl)库简化RSA加解密操作,包括秘钥生成、加解密及签名验证。该库还支持AES、DES等常用算法,安装简便,代码示例清晰易懂。
47 12
|
13天前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
18天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
47 5
|
16天前
|
监控 算法 安全
解锁企业计算机监控的关键:基于 Go 语言的精准洞察算法
企业计算机监控在数字化浪潮下至关重要,旨在保障信息资产安全与高效运营。利用Go语言的并发编程和系统交互能力,通过进程监控、网络行为分析及应用程序使用记录等手段,实时掌握计算机运行状态。具体实现包括获取进程信息、解析网络数据包、记录应用使用时长等,确保企业信息安全合规,提升工作效率。本文转载自:[VIPShare](https://www.vipshare.com)。
23 0
|
18天前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
52 0
|
人工智能 算法 Go
使用golang学习算法(1)-排序
前言 终于感觉到算法的重要了。于是打算继续学习下。 其实算法跟语言没有啥关系,用啥语言都可以实现关键是思路,最近正好在学习golang。打算把算法的编写使用golang完成。 没有使用IDE,使用的是sublime2+ golang的插件,然后使用命令行进行编译。 开发效率也不低,也支持语言的自动补齐。 搭建环境【http://blog.csdn.net/freewebsys/a
1077 0
|
18天前
|
存储 监控 算法
员工上网行为监控中的Go语言算法:布隆过滤器的应用
在信息化高速发展的时代,企业上网行为监管至关重要。布隆过滤器作为一种高效、节省空间的概率性数据结构,适用于大规模URL查询与匹配,是实现精准上网行为管理的理想选择。本文探讨了布隆过滤器的原理及其优缺点,并展示了如何使用Go语言实现该算法,以提升企业网络管理效率和安全性。尽管存在误报等局限性,但合理配置下,布隆过滤器为企业提供了经济有效的解决方案。
62 8
员工上网行为监控中的Go语言算法:布隆过滤器的应用