MySQL 更新1000万条数据和DDL执行时间分析

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: MySQL 更新1000万条数据和DDL执行时间分析

在现代应用中,随着数据量的不断增加,对数据库进行大规模数据更新和执行DDL(Data Definition Language)操作变得越来越常见。然而,大量数据的更新和DDL操作可能会对系统性能产生显著影响。本文将探讨在MySQL数据库中更新1000万条数据和执行DDL操作的大概时间,并通过多个代码示例来演示这些操作。


一、MySQL 1000万条数据的更新


1. 数据准备


首先,我们需要在MySQL中创建一个示例表并插入1000万条数据。以下SQL脚本用于创建表和插入数据:

CREATE TABLE large_table (
    id INT AUTO_INCREMENT PRIMARY KEY,
    name VARCHAR(100),
    value INT
);

-- 插入1000万条数据
DELIMITER $$
CREATE PROCEDURE insert_large_data()
BEGIN
    DECLARE i INT DEFAULT 1;
    WHILE i <= 10000000 DO
        INSERT INTO large_table (name, value) VALUES (CONCAT('name', i), i);
        SET i = i + 1;
    END WHILE;
END$$
DELIMITER ;

CALL insert_large_data();


2. 数据更新


接下来,我们将进行数据更新操作。以下示例演示如何批量更新1000万条数据中的一部分,并记录更新所需的时间:

-- 更新操作
SET @start_time = NOW();

UPDATE large_table SET value = value + 1 WHERE id <= 5000000;
SET @end_time = NOW();

SELECT TIMESTAMPDIFF(SECOND, @start_time, @end_time) AS update_duration;


3. 更新操作分析


在执行上述更新操作后,使用 SELECT TIMESTAMPDIFF(SECOND, @start_time, @end_time) AS update_duration; 语句可以得出此次更新操作的时间。实际时间会根据硬件配置、表结构、索引情况以及数据库负载等因素有所不同。通常情况下,更新500万条数据可能需要几分钟到几十分钟不等。


二、MySQL DDL 操作


1. DDL 操作示例

DDL操作主要包括创建、修改和删除表结构。以下是几个常见的DDL操作示例:

示例1:添加新列

SET @start_time = NOW();

ALTER TABLE large_table ADD COLUMN new_column VARCHAR(100);

SET @end_time = NOW();
SELECT TIMESTAMPDIFF(SECOND, @start_time, @end_time) AS ddl_duration;


示例2:修改列类型

SET @start_time = NOW();

ALTER TABLE large_table MODIFY COLUMN value BIGINT;

SET @end_time = NOW();
SELECT TIMESTAMPDIFF(SECOND, @start_time, @end_time) AS ddl_duration;


示例3:删除列

SET @start_time = NOW();

ALTER TABLE large_table DROP COLUMN new_column;

SET @end_time = NOW();
SELECT TIMESTAMPDIFF(SECOND, @start_time, @end_time) AS ddl_duration;


2. DDL 操作分析


与数据更新类似,DDL操作的时间也受到多种因素的影响。通常,添加或删除列的操作比修改列类型的操作快。对于1000万条记录的大表,执行这些DDL操作可能需要几秒到几分钟不等。


三、优化建议


1. 分批次更新

对于大规模的数据更新操作,建议分批次进行,以减少单次操作对数据库的压力。以下是分批次更新的示例:

-- 分批次更新操作
DELIMITER $$
CREATE PROCEDURE batch_update()
BEGIN
    DECLARE batch_size INT DEFAULT 100000;
    DECLARE total_batches INT DEFAULT 100;
    DECLARE batch_number INT DEFAULT 1;
   
    WHILE batch_number <= total_batches DO
        UPDATE large_table
        SET value = value + 1
        WHERE id BETWEEN (batch_number - 1) * batch_size + 1 AND batch_number * batch_size;
       
        SET batch_number = batch_number + 1;
    END WHILE;
END$$
DELIMITER ;

CALL batch_update();


2. 使用事务


在进行大量数据更新时,使用事务可以确保操作的原子性和一致性:

START TRANSACTION;

UPDATE large_table SET value = value + 1 WHERE id <= 5000000;

COMMIT;


3. 调整表结构

对于DDL操作,可以考虑调整表结构或使用临时表以减少操作时间。例如:

CREATE TABLE temp_table LIKE large_table;

ALTER TABLE temp_table ADD COLUMN new_column VARCHAR(100);

INSERT INTO temp_table SELECT * FROM large_table;

RENAME TABLE large_table TO old_large_table, temp_table TO large_table;

DROP TABLE old_large_table;


四、总结


本文详细探讨了在MySQL中更新1000万条数据和执行DDL操作的大概时间,并通过多个代码示例演示了实际操作。影响这些操作时间的因素包括硬件配置、表结构、索引情况以及数据库负载等。为了优化这些操作的性能,建议采用分批次更新、使用事务以及调整表结构等方法。


在实际应用中,应根据具体情况选择合适的优化策略,以确保大规模数据操作的高效性和可靠性。


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
目录
相关文章
|
11天前
|
存储 消息中间件 监控
MySQL 到 ClickHouse 明细分析链路改造:数据校验、补偿与延迟治理
蒋星熠Jaxonic,数据领域技术深耕者。擅长MySQL到ClickHouse链路改造,精通实时同步、数据校验与延迟治理,致力于构建高性能、高一致性的数据架构体系。
MySQL 到 ClickHouse 明细分析链路改造:数据校验、补偿与延迟治理
|
25天前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
60 3
|
5月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
3月前
|
SQL 人工智能 关系型数据库
如何实现MySQL百万级数据的查询?
本文探讨了在MySQL中对百万级数据进行排序分页查询的优化策略。面对五百万条数据,传统的浅分页和深分页查询效率较低,尤其深分页因偏移量大导致性能显著下降。通过为排序字段添加索引、使用联合索引、手动回表等方法,有效提升了查询速度。最终建议根据业务需求选择合适方案:浅分页可加单列索引,深分页推荐联合索引或子查询优化,同时结合前端传递最后一条数据ID的方式实现高效翻页。
167 0
|
3天前
|
NoSQL 算法 Redis
【Docker】(3)学习Docker中 镜像与容器数据卷、映射关系!手把手带你安装 MySql主从同步 和 Redis三主三从集群!并且进行主从切换与扩容操作,还有分析 哈希分区 等知识点!
Union文件系统(UnionFS)是一种**分层、轻量级并且高性能的文件系统**,它支持对文件系统的修改作为一次提交来一层层的叠加,同时可以将不同目录挂载到同一个虚拟文件系统下(unite several directories into a single virtual filesystem) Union 文件系统是 Docker 镜像的基础。 镜像可以通过分层来进行继承,基于基础镜像(没有父镜像),可以制作各种具体的应用镜像。
58 0
|
25天前
|
缓存 监控 关系型数据库
使用MYSQL Report分析数据库性能(上)
最终建议:当前系统是完美的读密集型负载模型,优化重点应放在减少行读取量和提高数据定位效率。通过索引优化、分区策略和内存缓存,预期可降低30%的CPU负载,同时保持100%的缓冲池命中率。建议每百万次查询后刷新统计信息以持续优化
88 6
|
25天前
|
缓存 监控 关系型数据库
使用MYSQL Report分析数据库性能(中)
使用MYSQL Report分析数据库性能
81 1
|
2月前
|
存储 关系型数据库 MySQL
深入理解MySQL索引类型及其应用场景分析。
通过以上介绍可以看出各类MySQL指标各自拥有明显利弊与最佳实践情墁,在实际业务处理过程中选择正确型号极其重要以确保系统运作流畅而稳健。
134 12
|
2月前
|
存储 关系型数据库 MySQL
在CentOS 8.x上安装Percona Xtrabackup工具备份MySQL数据步骤。
以上就是在CentOS8.x上通过Perconaxtabbackup工具对Mysql进行高效率、高可靠性、无锁定影响地实现在线快速全量及增加式数据库资料保存与恢复流程。通过以上流程可以有效地将Mysql相关资料按需求完成定期或不定期地保存与灾难恢复需求。
189 10
|
3月前
|
存储 SQL 关系型数据库
MySQL的Redo Log与Binlog机制对照分析
通过合理的配置和细致的管理,这两种日志机制相互配合,能够有效地提升MySQL数据库的可靠性和稳定性。
133 10

推荐镜像

更多
下一篇
日志分析软件