手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣

简介: 【10月更文挑战第1天】本文通过构建一个简单的强化学习环境,演示了如何创建和训练智能体以完成特定任务。我们使用Python、OpenAI Gym和PyTorch搭建了一个基础的智能体,使其学会在CartPole-v1环境中保持杆子不倒。文中详细介绍了环境设置、神经网络构建及训练过程。此实战案例有助于理解智能体的工作原理及基本训练方法,为更复杂应用奠定基础。首先需安装必要库:```bashpip install gym torch```接着定义环境并与之交互,实现智能体的训练。通过多个回合的试错学习,智能体逐步优化其策略。这一过程虽从基础做起,但为后续研究提供了良好起点。

Agent智能体项目实战
image.png

当谈到智能体(agent)时,我们通常指的是在一个环境中能够感知并采取行动的实体。在人工智能领域,智能体可以是模拟环境中的机器人、游戏中的非玩家角色(NPC),甚至是复杂的软件系统的一部分。本篇将通过构建一个简单的强化学习环境来演示如何创建和训练一个智能体,使其学会在特定环境中执行特定任务。我们将使用Python编程语言,并利用OpenAI Gym库来创建环境,使用PyTorch进行深度学习模型的开发。

首先,我们需要安装必要的库:

pip install gym torch

接下来,定义我们的环境。这里我们选择一个简单的环境——CartPole-v1,它是一个经典的控制问题,智能体需要学会如何通过左右移动一个推车来保持直立的杆子不倒下。

import gym

env = gym.make('CartPole-v1')
env.reset()

然后,我们定义一个简单的神经网络作为智能体的大脑,它接收来自环境的状态,并输出动作。在这个例子中,我们将使用一个单层的全连接网络。

import torch
import torch.nn as nn
import torch.optim as optim

class SimplePolicy(nn.Module):
    def __init__(self):
        super(SimplePolicy, self).__init__()
        self.fc1 = nn.Linear(env.observation_space.shape[0], 128)
        self.fc2 = nn.Linear(128, env.action_space.n)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

policy = SimplePolicy()
optimizer = optim.Adam(policy.parameters(), lr=0.01)

现在,我们编写训练循环。在这个循环中,智能体会与环境互动,尝试通过试错来学习策略。我们将记录每次尝试的结果,并使用这些结果来更新智能体的策略。

def train_episode(policy, optimizer, env):
    state = env.reset()
    done = False
    while not done:
        # 使用智能体选择动作
        action_probs = policy(torch.FloatTensor(state))
        action = torch.argmax(action_probs).item()

        # 执行动作并观察结果
        next_state, reward, done, _ = env.step(action)

        # 更新状态
        state = next_state

        # 训练模型
        loss = -torch.log(action_probs[action])
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    return reward

# 进行多个回合的训练
num_episodes = 1000
for episode in range(num_episodes):
    reward = train_episode(policy, optimizer, env)
    if episode % 100 == 0:
        print(f"Episode {episode}: Reward = {reward}")

以上就是构建和训练一个简单智能体的全过程。在这个过程中,我们从零开始搭建了一个强化学习环境,并且训练了一个能够执行特定任务的智能体。值得注意的是,这里的智能体非常基础,仅作为一个起点。在更复杂的应用场景中,可能需要更高级的算法和技术来改进智能体的表现,例如使用更复杂的神经网络架构、更精细的训练策略等。

通过这样的实战练习,我们可以更好地理解智能体是如何工作的,以及如何设计和训练它们来完成指定任务。对于进一步的研究和开发,这个基础可以作为一个良好的起点。

相关文章
|
2月前
|
人工智能 测试技术 API
构建AI智能体:二、DeepSeek的Ollama部署FastAPI封装调用
本文介绍如何通过Ollama本地部署DeepSeek大模型,结合FastAPI实现API接口调用。涵盖Ollama安装、路径迁移、模型下载运行及REST API封装全过程,助力快速构建可扩展的AI应用服务。
707 6
|
2月前
|
人工智能 API 开发工具
构建AI智能体:一、初识AI大模型与API调用
本文介绍大模型基础知识及API调用方法,涵盖阿里云百炼平台密钥申请、DashScope SDK使用、Python调用示例(如文本情感分析、图像文字识别),助力开发者快速上手大模型应用开发。
1236 16
构建AI智能体:一、初识AI大模型与API调用
|
2月前
|
存储 机器学习/深度学习 人工智能
构建AI智能体:三、Prompt提示词工程:几句话让AI秒懂你心
本文深入浅出地讲解Prompt原理及其与大模型的关系,系统介绍Prompt的核心要素、编写原则与应用场景,帮助用户通过精准指令提升AI交互效率,释放大模型潜能。
528 5
|
存储 人工智能 自然语言处理
AI经营|多Agent择优生成商品标题
商品标题中关键词的好坏是商品能否被主搜检索到的关键因素,使用大模型自动优化标题成为【AI经营】中的核心能力之一,本文讲述大模型如何帮助商家优化商品素材,提升商品竞争力。
1353 62
AI经营|多Agent择优生成商品标题
|
机器学习/深度学习 人工智能 自然语言处理
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
谷歌最新推出的Gemini 2.0是一款原生多模态输入输出的AI模型,以Agent技术为核心,支持多种数据类型的输入与输出,具备强大的性能和多语言音频输出能力。本文将详细介绍Gemini 2.0的主要功能、技术原理及其在多个领域的应用场景。
1196 20
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
|
人工智能 自然语言处理 前端开发
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
Director 是一个构建视频智能体的 AI 框架,用户可以通过自然语言命令执行复杂的视频任务,如搜索、编辑、合成和生成视频内容。该框架基于 VideoDB 的“视频即数据”基础设施,集成了多个预构建的视频代理和 AI API,支持高度定制化,适用于开发者和创作者。
643 9
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
|
机器学习/深度学习 人工智能 算法
Meta Motivo:Meta 推出能够控制数字智能体动作的 AI 模型,提升元宇宙互动体验的真实性
Meta Motivo 是 Meta 公司推出的 AI 模型,旨在控制数字智能体的全身动作,提升元宇宙体验的真实性。该模型通过无监督强化学习算法,能够实现零样本学习、行为模仿与生成、多任务泛化等功能,适用于机器人控制、虚拟助手、游戏角色动画等多个应用场景。
337 4
Meta Motivo:Meta 推出能够控制数字智能体动作的 AI 模型,提升元宇宙互动体验的真实性
|
人工智能 自然语言处理 JavaScript
Agent-E:基于 AutoGen 代理框架构建的 AI 浏览器自动化系统
Agent-E 是一个基于 AutoGen 代理框架构建的智能自动化系统,专注于浏览器内的自动化操作。它能够执行多种复杂任务,如填写表单、搜索和排序电商产品、定位网页内容等,从而提高在线效率,减少重复劳动。本文将详细介绍 Agent-E 的功能、技术原理以及如何运行该系统。
976 5
Agent-E:基于 AutoGen 代理框架构建的 AI 浏览器自动化系统
|
人工智能 自然语言处理 数据挖掘
田渊栋团队新作祭出Agent-as-a-Judge!AI智能体自我审判,成本暴跌97%
田渊栋团队提出Agent-as-a-Judge框架,利用智能体自身评估其他智能体的性能,不仅关注最终结果,还能提供中间反馈,更全面准确地反映智能体的真实能力。该框架在DevAI基准测试中表现出色,成本效益显著,为智能体的自我改进提供了有力支持。
354 7

热门文章

最新文章