深度学习入门案例:运用神经网络实现价格分类

简介: 深度学习入门案例:运用神经网络实现价格分类

🍔 前言

踏入深度学习的奇妙世界,就像开启了一场探索未知的旅程。今天,我们将携手踏上一小段轻松而充满乐趣的入门之旅——价格分类。想象一下,通过神奇的神经网络,我们能够教会电脑理解并预测商品的价格区间,是不是既实用又令人兴奋呢?别担心复杂的数学公式,让我们以轻松愉悦的心态,一步步揭开深度学习的神秘面纱,从价格分类这个小案例开始,共同见证智能的力量吧!

案例背景🍼

小明创办了一家手机公司,他不知道如何估算手机产品的价格。为了解决这个问题,他收集了多家公司的手机销售数据。

我们需要帮助小明找出手机的功能(例如:RAM等)与其售价之间的某种关系。我们可以使用机器学习的方法来解决这个问题,也可以构建一个全连接的网络。

要求🍼

在这个问题中,我们不需要预测实际价格,而是一个价格范围,它的范围使用 0、1、2、3 来表示,所以该问题也是一个分类问题。

🍔 构建数据集

数据共有 2000 条, 其中 1600 条数据作为训练集, 400 条数据用作测试集。 我们使用 sklearn 的数据集划分工作来完成。并使用 PyTorch 的 TensorDataset 来将数据集构建为 Dataset 对象,方便构造数据集加载对象。

# 构建数据集
def create_dataset():
    data = pd.read_csv('data/手机价格预测.csv')
    # 特征值和目标值
    x, y = data.iloc[:, :-1], data.iloc[:, -1]
    x = x.astype(np.float32)
    y = y.astype(np.int64)
    # 数据集划分
    x_train, x_valid, y_train, y_valid = \
        train_test_split(x, y, train_size=0.8, random_state=88, stratify=y)
    # 构建数据集
    train_dataset = TensorDataset(torch.from_numpy(x_train.values), torch.tensor(y_train.values))
    valid_dataset = TensorDataset(torch.from_numpy(x_valid.values), torch.tensor(y_valid.values))
    return train_dataset, valid_dataset, x_train.shape[1], len(np.unique(y))
train_dataset, valid_dataset, input_dim, class_num = create_dataset()

🍔 构建分类网络模型

我们构建的用于手机价格分类的模型叫做全连接神经网络。它主要由三个线性层来构建,在每个线性层后,我们使用的时 sigmoid 激活函数。

# 构建网络模型
class PhonePriceModel(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(PhonePriceModel, self).__init__()
        self.linear1 = nn.Linear(input_dim, 128)
        self.linear2 = nn.Linear(128, 256)
        self.linear3 = nn.Linear(256, output_dim)
    def _activation(self, x):
        return torch.sigmoid(x)
    def forward(self, x):
        x = self._activation(self.linear1(x))
        x = self._activation(self.linear2(x))
        output = self.linear3(x)
        return output

我们的网络共有 3 个全连接层, 具体信息如下:

  1. 第一层: 输入为维度为 20, 输出维度为: 128
  2. 第二层: 输入为维度为 128, 输出维度为: 256
  3. 第三层: 输入为维度为 256, 输出维度为: 4

我们使用 sigmoid 激活函数.

🍔 编写训练函数

网络编写完成之后,我们需要编写训练函数。所谓的训练函数,指的是输入数据读取送入网络计算损失更新参数的流程,该流程较为固定。我们使用的是多分类交叉生损失函数、使用 SGD 优化方法。最终,将训练好的模型持久化到磁盘中。

def train():
    # 固定随机数种子
    torch.manual_seed(0)
    # 初始化模型
    model = PhonePriceModel(input_dim, class_num)
    # 损失函数
    criterion = nn.CrossEntropyLoss()
    # 优化方法
    optimizer = optim.SGD(model.parameters(), lr=1e-3)
    # 训练轮数
    num_epoch = 50
    for epoch_idx in range(num_epoch):
        # 初始化数据加载器
        dataloader = DataLoader(train_dataset, shuffle=True, batch_size=8)
        # 训练时间
        start = time.time()
        # 计算损失
        total_loss = 0.0
        total_num = 1
        # 准确率
        correct = 0
        for x, y in dataloader:
            output = model(x)
            # 计算损失
            loss = criterion(output, y)
            # 梯度清零
            optimizer.zero_grad()
            # 反向传播
            loss.backward()
            # 参数更新
            optimizer.step()
            total_num += len(y)
            total_loss += loss.item() * len(y)
        print('epoch: %4s loss: %.2f, time: %.2fs' %
              (epoch_idx + 1, total_loss / total_num, time.time() - start))
    # 模型保存
    torch.save(model.state_dict(), 'model/phone-price-model.bin')

🍔 编写评估函数

评估函数,也叫预测函数推理函数,主要使用训练好的模型,对未知的样本的进行预测的过程。我们这里使用前面单独划分出来的测试集来进行评估。

def test():
    # 加载模型
    model = PhonePriceModel(input_dim, class_num)
    model.load_state_dict(torch.load('model/phone-price-model.bin'))
    # 构建加载器
    dataloader = DataLoader(valid_dataset, batch_size=8, shuffle=False)
    # 评估测试集
    correct = 0
    for x, y in dataloader:
        output = model(x)
        y_pred = torch.argmax(output, dim=1)
        correct += (y_pred == y).sum()
    print('Acc: %.5f' % (correct.item() / len(valid_dataset)))

程序输出结果:

Acc: 0.54750

🍔 网络性能调优

我们前面的网络模型在测试集的准确率为: 0.54750, 我们可以通过以下方面进行调优:

  1. 对输入数据进行标准化
  2. 调整优化方法
  3. 调整学习率
  4. 增加批量归一化层
  5. 增加网络层数、神经元个数
  6. 增加训练轮数
  7. 等等...

为提升准确率,我进行下如下调整💯 :

🐼 优化方法由 SGD 调整为 Adam

🐼 学习率由 1e-3 调整为 1e-4

🐼 对数据数据进行标准化

🐼 增加网络深度, 即: 增加网络参数量

网络模型在测试集的准确率由 0.5475 上升到 0.9625,下面奉上调整后的完整代码🍭 :

import torch
import torch.nn as nn
import torch.nn.functional as F
import pandas as pd
from sklearn.model_selection import train_test_split
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader
import torch.optim as optim
import numpy as np
import time
from sklearn.preprocessing import StandardScaler
# 构建数据集
def create_dataset():
    data = pd.read_csv('data/手机价格预测.csv')
    # 特征值和目标值
    x, y = data.iloc[:, :-1], data.iloc[:, -1]
    x = x.astype(np.float32)
    y = y.astype(np.int64)
    # 数据集划分
    x_train, x_valid, y_train, y_valid = \
        train_test_split(x, y, train_size=0.8, random_state=88, stratify=y)
    # 数据标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_valid = transfer.transform(x_valid)
    # 构建数据集
    train_dataset = TensorDataset(torch.from_numpy(x_train), torch.tensor(y_train.values))
    valid_dataset = TensorDataset(torch.from_numpy(x_valid), torch.tensor(y_valid.values))
    return train_dataset, valid_dataset, x_train.shape[1], len(np.unique(y))
train_dataset, valid_dataset, input_dim, class_num = create_dataset()
# 构建网络模型
class PhonePriceModel(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(PhonePriceModel, self).__init__()
        self.linear1 = nn.Linear(input_dim, 128)
        self.linear2 = nn.Linear(128, 256)
        self.linear3 = nn.Linear(256, 512)
        self.linear4 = nn.Linear(512, 128)
        self.linear5 = nn.Linear(128, output_dim)
    def _activation(self, x):
        return torch.sigmoid(x)
    def forward(self, x):
        x = self._activation(self.linear1(x))
        x = self._activation(self.linear2(x))
        x = self._activation(self.linear3(x))
        x = self._activation(self.linear4(x))
        output = self.linear5(x)
        return output
# 编写训练函数
def train():
    # 固定随机数种子
    torch.manual_seed(0)
    # 初始化模型
    model = PhonePriceModel(input_dim, class_num)
    # 损失函数
    criterion = nn.CrossEntropyLoss()
    # 优化方法
    optimizer = optim.Adam(model.parameters(), lr=1e-4)
    # 训练轮数
    num_epoch = 50
    for epoch_idx in range(num_epoch):
        # 初始化数据加载器
        dataloader = DataLoader(train_dataset, shuffle=True, batch_size=8)
        # 训练时间
        start = time.time()
        # 计算损失
        total_loss = 0.0
        total_num = 1
        # 准确率
        correct = 0
        for x, y in dataloader:
            output = model(x)
            # 计算损失
            loss = criterion(output, y)
            # 梯度清零
            optimizer.zero_grad()
            # 反向传播
            loss.backward()
            # 参数更新
            optimizer.step()
            total_num += len(y)
            total_loss += loss.item() * len(y)
        print('epoch: %4s loss: %.2f, time: %.2fs' %
              (epoch_idx + 1, total_loss / total_num, time.time() - start))
    # 模型保存
    torch.save(model.state_dict(), 'model/phone-price-model.bin')
def test():
    # 加载模型
    model = PhonePriceModel(input_dim, class_num)
    model.load_state_dict(torch.load('model/phone-price-model.bin'))
    # 构建加载器
    dataloader = DataLoader(valid_dataset, batch_size=8, shuffle=False)
    # 评估测试集
    correct = 0
    for x, y in dataloader:
        output = model(x)
        y_pred = torch.argmax(output, dim=1)
        correct += (y_pred == y).sum()
    print('Acc: %.5f' % (correct.item() / len(valid_dataset)))
if __name__ == '__main__':
    train()
    test()

结语💘

学习并运用神经网络实现价格分类,是适应数据驱动时代的重要技能。它不仅能够显著提升决策效率和精准度,还能帮助我们从海量数据中挖掘出有价值的价格规律。掌握这一技术,将为个人和企业带来市场竞争中的显著优势。因此,深入探索和实践神经网络在价格分类中的应用,无疑是我们把握未来机遇、实现持续发展的关键所在。在此感谢CSDN大佬们的支持,有需要改进的地方欢迎大家指正!

相关文章
|
9天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
28 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
1月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
266 55
|
28天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
62 31
|
22天前
|
JSON Dart 前端开发
鸿蒙应用开发从入门到入行 - 篇7:http网络请求
在本篇文章里,您将掌握鸿蒙开发工具DevEco的基本使用、ArkUI里的基础组件,并通过制作一个简单界面掌握使用
64 8
|
1月前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
115 3
图卷积网络入门:数学基础与架构设计
|
1月前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
1月前
|
Web App开发 网络协议 安全
网络编程懒人入门(十六):手把手教你使用网络编程抓包神器Wireshark
Wireshark是一款开源和跨平台的抓包工具。它通过调用操作系统底层的API,直接捕获网卡上的数据包,因此捕获的数据包详细、功能强大。但Wireshark本身稍显复杂,本文将以用抓包实例,手把手带你一步步用好Wireshark,并真正理解抓到的数据包的各项含义。
98 2
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
1月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
87 3