基于模糊神经网络的移动机器人路径规划matlab仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 该程序利用模糊神经网络实现移动机器人的路径规划,能在含5至7个静态未知障碍物的环境中随机导航。机器人配备传感器检测前方及其两侧45度方向上的障碍物距离,并根据这些数据调整其速度和方向。MATLAB2022a版本下,通过模糊逻辑处理传感器信息,生成合理的路径,确保机器人安全到达目标位置。以下是该程序在MATLAB2022a下的测试结果展示。

1.程序功能描述
基于模糊神经网络的移动机器人路径规划

1.环境地图中的障碍物为静态、未知障碍物,可以随机设置。(一般设置5~7个,为计算简便设置成规则性状的障碍物)

2.机器人的行进方向为X轴的正方向,X轴逆时针旋转90°即为Y轴。两驱动轮之间的距离为50cm,驱动轮的直径为30cm。机器人的最大运动速度设为0.8m/s

3.为简化计算,在机器人的正前方及沿顺、逆时针各偏转45°的方位布置传感器。

机器人模型如图所示

8abb2dc889af0e31b77dcb47de250189_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

4.控制系统的输入为机器人正前方障碍物的距离df、左前方障碍物的距离dl、右前方障碍物的距离dr、机器人运动方向与目标方向之间的夹角(航向角)α,输出为机器人左、右轮的速度vl、vr(或者为机器人的速度v和转向角增量Δθ,其中转向角θ为世界坐标系与机器人坐标系X轴之间的夹角)。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

2.jpeg
3.jpeg
4.jpeg
5.jpeg

3.核心程序

``` for kk = 1:N
for m=1:Ns
xs(:,m) = [x(1,time-1) + Sense_radiuscos(Jd(m,1));
x(2,time-1) + Sense_radius
sin(Jd(m,1))];
G1(m,1) = func_obstacle(xs(:,m),xobstacle,yobstacle);
G2(m,1) = func_goal(xs(:,m),Pend);
G3(m,1) = G1(m,1) + G2(m,1);
end
[val,bestone]=min(G3);
%如果某个方向有多个障碍物,那么选择最近的那个
%如果某个方向的距离集合为空集合,那么说明这个方向的障碍物为无穷远,直接赋值一个较大值
dr_in = min(dr);
if isempty(dr) == 1
dr_in = 1e20;
end
d_in = min(d);
if isempty(d) == 1
d_in = 1e20;
end
dl_in = min(dl);
if isempty(dl) == 1
dl_in = 1e20;
end

   %代入到模糊神经网络的四个变量
   %调用模糊神经网络的模型
   [v_fnn,Theta_fnn]=func_fnn_test(dr_in,d_in,dl_in,alpha);
   DELTA_Theta = Theta_fnn;
   V           = v_fnn;
   x(:,time) =[x(1,time-1)+lambda*cos(Jd(bestone,1)); 
               x(2,time-1)+lambda*sin(Jd(bestone,1))];
   Deltalambda = V;
   Deltatheta  = DELTA_Theta;
   x(:,time)   =[x(1,time)+Deltalambda*cos(Jd(bestone,1)+Deltatheta); 
                 x(2,time)+Deltalambda*sin(Jd(bestone,1)+Deltatheta)];   

   %更新坐标
   Xs(time)    = x(1,time);
   Ys(time)    = x(2,time);   
   Tes         = [Tes,Jd(bestone,1)+Deltatheta];
   Vs          = [Vs,Deltalambda];       
end

%画图
plot(x(1,time),x(2,time),'r.')
hold on
drawnow;   
if sqrt((Xs(time)-X_end)^2+(Ys(time)-Y_end)^2)<0.2
   break;
end

end

figure;
subplot(211);
plot(Tes);
grid on
xlabel('times');
ylabel('theta')

subplot(212);
plot(Vs);
grid on
xlabel('times');
ylabel('speed')

06_017m

```

4.本算法原理
4.1 移动机器人路径规划问题概述
在移动机器人领域,路径规划是一个核心任务,目标是在未知或已知环境中为机器人寻找一条从起始点到目标点的安全、有效且满足特定约束条件(如避障、最短距离等)的路径。数学上,通常将环境表示为一个离散或者连续的空间,并通过图论中的搜索算法来解决。

4.2 模糊系统与模糊逻辑
控制系统的输出为机器人左、右轮的速度vl、vr(或者为机器人的速度v和转向角增量Δθ,其中转向角θ为世界坐标系与机器人坐标系X轴之间的夹角)。

df、dl、dr的模糊集合为{Nr,Ml,Fr} Nr-近 Ml-中 Fr-远

α的模糊集合为{NB,NS,Z,PS,PB} NB-负大 NS-负小 Z-零 PS-正小 PB-正大

(当目标点位于机器人的右侧时航向角为α正,反之为负)

vl、vr、v的模糊集合为{Sw,Md,Ft} Sw-慢速 Md-中速 Ft-快速

Δθ的模糊集合为{ NS,Z,PS } NS-负小 Z-零 PS-正小

整个模糊神经网络的基本结构如下图所示:

0293d54308d200b2ab7861f4a5bb990b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

由于左右两个传感器正好在45度方向,所以在实际工作的时候,

40a4e895acbe855fd56b314abe7a2289_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

相关文章
|
7天前
|
机器学习/深度学习 算法 机器人
基于QLearning强化学习的较大规模栅格地图机器人路径规划matlab仿真
本项目基于MATLAB 2022a,通过强化学习算法实现机器人在栅格地图中的路径规划。仿真结果显示了机器人从初始位置到目标位置的行驶动作序列(如“下下下下右右...”),并生成了详细的路径图。智能体通过Q-Learning算法与环境交互,根据奖励信号优化行为策略,最终学会最优路径。核心程序实现了效用值排序、状态转换及动作选择,并输出机器人行驶的动作序列和路径可视化图。
147 85
|
7天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
3天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
13天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
15天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
10天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
10天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。
|
2月前
|
人工智能 自然语言处理 算法
具身智能高校实训解决方案 ----从AI大模型+机器人到通用具身智能
在具身智能的发展历程中,AI 大模型的出现成为了关键的推动力量。高校作为培养未来科技人才的摇篮,需要紧跟这一前沿趋势,开展具身智能实训课程。通过将 AI 大模型与具备 3D 视觉的机器人相结合,为学生搭建一个实践平台。
216 64
|
21天前
|
机器学习/深度学习 人工智能 算法
人工智能与机器人的结合:智能化世界的未来
人工智能与机器人的结合:智能化世界的未来
129 32
|
4天前
|
数据采集 监控 数据可视化
优锘科技携手逐际动力,共创数字孪生与具身智能机器人新未来
近日,优锘科技与逐际动力正式宣布达成战略合作,双方将在业务和技术领域展开深度协作,共同探索数字孪生与具身智能机器人的融合应用。这一合作无疑将为智能科技领域注入全新动力,推动行业智能化转型迈向更高水平。