基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真

简介: ### 算法简介1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。2. **算法运行软件版本**:Matlab 2017b。3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。整个算法流程图见下图。

1.算法运行效果图预览
(完整程序运行后无水印)

1.gif
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg

2.算法运行软件版本
matlab2017b

3.部分核心程序
(完整版代码包含中文注释和操作步骤视频)

```function [Ic,Xmin3,Xmax3,Ymin3,Ymax3] = func_merge(I,Trafficxy,Smj,SCALE);

%提取交通标志的中心点,判断是否为同一个标志
for i = 1:length(Trafficxy)
Xmin(i)= min(Trafficxy{i}(:,1));
Xmax(i)= max(Trafficxy{i}(:,1));
Ymin(i)= min(Trafficxy{i}(:,2));
Ymax(i)= max(Trafficxy{i}(:,2));
Xc(i) = (Xmin(i)+Xmax(i))/2;
Yc(i) = (Ymin(i)+Ymax(i))/2;
end

%重合点合并
Xmin2=[];
Xmax2=[];
Ymin2=[];
Ymax2=[];

if length(Xc)>1
indx = 0;
for i = 1:length(Xc)
tmps=[];
for j = 1:length(Xc)
if sqrt(double((Xc(i) - Xc(j))^2 + (Yc(i) - Yc(j))^2))<=20
tmps=[tmps,j];
end
end
Xmin2(i) = mean(Xmin(tmps));
Xmax2(i) = mean(Xmax(tmps));
Ymin2(i) = mean(Ymin(tmps));
Ymax2(i) = mean(Ymax(tmps));
end
%根据XYi的相似性进行合并
else
Xmin2= Xmin;
Xmax2= Xmax;
Ymin2= Ymin;
Ymax2= Ymax;
end

%%
index = 0;
for i = 1:length(Xmin2)
SS = abs(Ymin2(i)-Ymax2(i))*abs(Xmin2(i)-Xmax2(i))
if SS>Smj
index = index + 1;
Ic{index} = I(Ymin2(i)-SCALE:Ymax2(i)+SCALE,Xmin2(i)-SCALE:Xmax2(i)+SCALE,:);
Xmin3(index) = (Xmin(i));
Xmax3(index) = (Xmax(i));
Ymin3(index) = (Ymin(i));
Ymax3(index) = (Ymax(i));
end
end
10_044m

```

4.算法理论概述
4.1 MSER
MSER是一种用于检测显著区域的技术,它能够提取图像中的稳定区域,这些区域在不同尺度上都是稳定的。MSER对于光照变化具有鲁棒性,这使得它非常适合于交通标志检测。MSER算法基于一个关键概念:对于给定的阈值t,图像中的每一个像素点都可以被标记为前景或背景。随着阈值t的变化,图像中的区域也会随之发生变化。MSER区域定义为在一定范围内,即使阈值变化也不会发生分裂或合并的区域。

image.png

4.2 HOG特征提取
HOG特征是一种广泛应用于物体检测领域的特征描述符。它通过计算图像中小区域(称为cell)的梯度直方图来捕捉局部纹理信息,这些信息对于识别特定物体非常有用。

HOG特征提取包括以下步骤:

图像归一化:将图像缩放到固定大小。
梯度计算:计算每个像素的梯度幅度和方向。
细胞分区:将图像分割成小的单元格(cell)。
梯度直方图:在每个单元格内统计梯度方向直方图。
块标准化:将相邻的单元格组合成块(block),并对每个块内的直方图进行归一化。

image.png

4.3 SVM
SVM试图找到一个超平面,使得两类样本之间的间隔最大化。对于线性可分的情况,SVM寻找一个决策边界w⊤x+b=0,其中w是法向量,b是偏置项。

image.png

整个算法流程图如下图所示:

10.jpeg

相关文章
|
3天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
10天前
|
算法
基于模糊PI控制算法的龙格库塔CSTR模型控制系统simulink建模与仿真
本项目基于MATLAB2022a,采用模糊PI控制算法结合龙格-库塔方法,对CSTR模型进行Simulink建模与仿真。通过模糊控制处理误差及变化率,实现精确控制。核心在于将模糊逻辑与经典数值方法融合,提升系统性能。
|
10天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
224 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
140 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
109 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
7月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
7月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)
下一篇
DataWorks