基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真

简介: ### 算法简介1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。2. **算法运行软件版本**:Matlab 2017b。3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。整个算法流程图见下图。

1.算法运行效果图预览
(完整程序运行后无水印)

1.gif
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg

2.算法运行软件版本
matlab2017b

3.部分核心程序
(完整版代码包含中文注释和操作步骤视频)

```function [Ic,Xmin3,Xmax3,Ymin3,Ymax3] = func_merge(I,Trafficxy,Smj,SCALE);

%提取交通标志的中心点,判断是否为同一个标志
for i = 1:length(Trafficxy)
Xmin(i)= min(Trafficxy{i}(:,1));
Xmax(i)= max(Trafficxy{i}(:,1));
Ymin(i)= min(Trafficxy{i}(:,2));
Ymax(i)= max(Trafficxy{i}(:,2));
Xc(i) = (Xmin(i)+Xmax(i))/2;
Yc(i) = (Ymin(i)+Ymax(i))/2;
end

%重合点合并
Xmin2=[];
Xmax2=[];
Ymin2=[];
Ymax2=[];

if length(Xc)>1
indx = 0;
for i = 1:length(Xc)
tmps=[];
for j = 1:length(Xc)
if sqrt(double((Xc(i) - Xc(j))^2 + (Yc(i) - Yc(j))^2))<=20
tmps=[tmps,j];
end
end
Xmin2(i) = mean(Xmin(tmps));
Xmax2(i) = mean(Xmax(tmps));
Ymin2(i) = mean(Ymin(tmps));
Ymax2(i) = mean(Ymax(tmps));
end
%根据XYi的相似性进行合并
else
Xmin2= Xmin;
Xmax2= Xmax;
Ymin2= Ymin;
Ymax2= Ymax;
end

%%
index = 0;
for i = 1:length(Xmin2)
SS = abs(Ymin2(i)-Ymax2(i))*abs(Xmin2(i)-Xmax2(i))
if SS>Smj
index = index + 1;
Ic{index} = I(Ymin2(i)-SCALE:Ymax2(i)+SCALE,Xmin2(i)-SCALE:Xmax2(i)+SCALE,:);
Xmin3(index) = (Xmin(i));
Xmax3(index) = (Xmax(i));
Ymin3(index) = (Ymin(i));
Ymax3(index) = (Ymax(i));
end
end
10_044m

```

4.算法理论概述
4.1 MSER
MSER是一种用于检测显著区域的技术,它能够提取图像中的稳定区域,这些区域在不同尺度上都是稳定的。MSER对于光照变化具有鲁棒性,这使得它非常适合于交通标志检测。MSER算法基于一个关键概念:对于给定的阈值t,图像中的每一个像素点都可以被标记为前景或背景。随着阈值t的变化,图像中的区域也会随之发生变化。MSER区域定义为在一定范围内,即使阈值变化也不会发生分裂或合并的区域。

image.png

4.2 HOG特征提取
HOG特征是一种广泛应用于物体检测领域的特征描述符。它通过计算图像中小区域(称为cell)的梯度直方图来捕捉局部纹理信息,这些信息对于识别特定物体非常有用。

HOG特征提取包括以下步骤:

图像归一化:将图像缩放到固定大小。
梯度计算:计算每个像素的梯度幅度和方向。
细胞分区:将图像分割成小的单元格(cell)。
梯度直方图:在每个单元格内统计梯度方向直方图。
块标准化:将相邻的单元格组合成块(block),并对每个块内的直方图进行归一化。

image.png

4.3 SVM
SVM试图找到一个超平面,使得两类样本之间的间隔最大化。对于线性可分的情况,SVM寻找一个决策边界w⊤x+b=0,其中w是法向量,b是偏置项。

image.png

整个算法流程图如下图所示:

10.jpeg

相关文章
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
本程序基于免疫算法实现物流仓储点选址优化,并通过MATLAB 2022A仿真展示结果。核心代码包括收敛曲线绘制、最优派送路线规划及可视化。算法模拟生物免疫系统,通过多样性生成、亲和力评价、选择、克隆、变异和抑制机制,高效搜索最优解。解决了物流仓储点选址这一复杂多目标优化问题,显著提升物流效率与服务质量。附完整无水印运行结果图示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
|
8月前
|
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
306 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
183 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
215 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等