基于禁忌搜索算法的VRP问题求解matlab仿真,带GUI界面,可设置参数

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 该程序基于禁忌搜索算法求解车辆路径问题(VRP),使用MATLAB2022a版本实现,并带有GUI界面。用户可通过界面设置参数并查看结果。禁忌搜索算法通过迭代改进当前解,并利用记忆机制避免陷入局部最优。程序包含初始化、定义邻域结构、设置禁忌列表等步骤,最终输出最优路径和相关数据图表。

1.程序功能描述
基于禁忌搜索算法的VRP问题求解matlab仿真,带GUI界面,可设置参数。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

1.jpeg
2.jpeg
3.jpeg

3.核心程序

```while COUNT<=Itertions ֲ
L = zeros(Ant_Num,1);
for i=1:Ant_Num
Infor_Tabu_tmps = Infor_Tabu(i,:);
R = Infor_Tabu_tmps(Infor_Tabu_tmps>0);
for j=1:(length(R)-1)
L(i) = L(i) + D(R(j),R(j+1));
end
end
Best_Length(COUNT) = min(L);
pos = find(L==Best_Length(COUNT));
Best_Road(COUNT,1:length(Infor_Tabu(pos(1),:)))=Infor_Tabu(pos(1),:);
% Ž и
select = find(Best_Road(COUNT,:)==1);
FF = [];
FF2 = 0;
for I1 = 1:(length(select)-1)
Best_Road2 = Best_Road(COUNT,select(I1):select(I1+1));
Best_Road_len = length(Best_Road2);
T = zeros((length(select)-1),1);
for I4=1:(Best_Road_len-1)
T(I1) = T(I1) + D(Best_Road2(I4),Best_Road2(I4+1));
end
for I2 = 2:(Best_Road_len-1)
for I3=(I2+1):(Best_Road_len-1)
Best_Road3 = Best_Road2;
Best_Road31 = Best_Road3(I2);
Best_Road32 = Best_Road3(I3);
Best_Road3(I2) = Best_Road32;
Best_Road3(I3) = Best_Road31;
TT = zeros(1);
for I4=1:(Best_Road_len-1)
TT = TT + D(Best_Road3(I4),Best_Road3(I4+1));
end
if TT= 2
Best_Road2=Best_Road2(2:Best_Road_len);
end
FF = [FF,Best_Road2];
FF2 = FF2+T(I1);
end
Best_Length(COUNT) = FF2;
Best_Road(COUNT,1:length(FF)) = FF;
FF = [];
FF2 = 0;
Avg_Length(COUNT) = mean(L);
COUNT = COUNT+1;
% Ϣ
Delta_Infor = zeros(PNUM,PNUM);
for i=1:Ant_Num
Infor_Tabu_tmps = Infor_Tabu(i,:);
R = Infor_Tabu_tmps(Infor_Tabu_tmps>0);
for j=1:(length(R)-1)
Delta_Infor(R(j),R(j+1))=Delta_Infor(R(j),R(j+1))+Q/L(i);
end
end
Infor_cube = (1-Rho).*Infor_cube+Delta_Infor;
% ɱ
Infor_Tabu = zeros(Ant_Num,PNUM);
Carrier = 0;
end

Pos = find(Best_Length==min(Best_Length));
best_route = Best_Road(Pos(1),:);
best_length = Best_Length(Pos(1));
best_route = best_route(best_route>0);

best_route
best_length

axes(handles.axes1);
plot([Position(best_route,1)],[Position(best_route,2)],'ro');
axis square;

axes(handles.axes2);
plot([Position(best_route,1)],[Position(best_route,2)],'rs');
hold on
plot([Position(best_route,1)],[Position(best_route,2)],'b-');
axis square;

axes(handles.axes3);
plot(Best_Length,'b-o');
hold on
plot(Avg_Length,'r-o');
grid on;
legend(' ̾ ','ƽ ');

% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
clc;
clear;
close all;
06_012m

```

4.本算法原理
4.1车辆路径问题(Vehicle Routing Problem, VRP)概述
车辆路径问题是一个典型的组合优化问题,其目标是在满足一系列约束条件下,为一组客户分配服务车辆,并确定每辆车的行驶路线,使得所有客户的配送需求得到满足的同时,总行驶距离或成本最小。数学表达式可以表示为:

092c4a26fafe77da78babe5f96d783b4_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

其中,

m 是车辆数量;
n 是客户节点的数量;
cij​ 表示从客户节点 i 到客户节点 j 的行驶距离或成本;
xij​ 是二进制变量,如果 xij​=1,则表明在解决方案中,车辆从节点 i 直接行驶到节点 j。
同时需要满足以下约束条件:

每个客户节点仅被访问一次(除了起点和终点可能相同);
所有车辆必须返回出发点;
每辆车的最大载货量限制;
每辆车的最大行驶距离或时间限制等。
4.2 禁忌搜索算法(Tabu Search, TS)原理
禁忌搜索是一种启发式全局优化算法,通过不断迭代改进当前解,并利用记忆机制避免陷入局部最优解。对于VRP问题,TS的基本步骤如下:

初始化:生成一个初始解(即一个可行的车辆路线集合)。
定义邻域结构:定义如何改变当前解以生成新的候选解,通常包括交换、插入、删除、反转等操作。
设置禁忌列表(Tabu List):记录最近若干步内被改变过的元素及其变化方式,在一定步数内禁止再次进行同样的改变。
迭代过程:
生成当前解的一个或多个邻居解。
对每个邻居解进行评估,检查是否违反任何硬约束(如容量限制),若不违反,则计算其目标函数值。
若邻居解优于当前解且不在禁忌列表中,则接受该邻居解作为新的当前解,并将其变化信息加入禁忌列表。
更新最佳解记录,当发现更好的解时保存。
继续迭代直到达到预设的终止条件(如迭代次数、改进幅度阈值等)。

相关文章
|
1天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
102 80
|
1天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+turbo译码的64QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统基于MATLAB 2022a仿真,适用于高要求的图像传输场景(如无人机、视频监控等),采用64QAM调制解调、扩频技术和Turbo译码提高抗干扰能力。发射端包括图像源、64QAM调制器、扩频器等;接收端则有解扩器、64QAM解调器和Turbo译码器等。核心程序实现图像传输的编码、调制、信道传输及解码,确保图像质量和传输可靠性。
26 16
|
6天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
14天前
|
算法
基于模糊PI控制算法的龙格库塔CSTR模型控制系统simulink建模与仿真
本项目基于MATLAB2022a,采用模糊PI控制算法结合龙格-库塔方法,对CSTR模型进行Simulink建模与仿真。通过模糊控制处理误差及变化率,实现精确控制。核心在于将模糊逻辑与经典数值方法融合,提升系统性能。
|
14天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
226 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
141 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
111 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)

热门文章

最新文章