【C++篇】深入内存迷宫:C/C++ 高效内存管理全揭秘

简介: 【C++篇】深入内存迷宫:C/C++ 高效内存管理全揭秘

C/C++ 内存管理详解

💬 欢迎讨论:如果你在学习过程中有任何问题或想法,欢迎在评论区留言,我们一起交流学习。你的支持是我继续创作的动力!

👍 点赞、收藏与分享:觉得这篇文章对你有帮助吗?别忘了点赞、收藏并分享给更多的小伙伴哦!你们的支持是我不断进步的动力!

🚀 分享给更多人:如果你觉得这篇文章对你有帮助,欢迎分享给更多对C++感兴趣的朋友,让我们一起进步!

前言

软件开发过程中,内存管理是一个非常重要的环节。对于 C 和 C++ 这两种编程语言,它们都拥有独特的内存管理机制,理解这些机制对于编写高效、健壮的程序至关重要。本文将详细讲解 C/C++ 内存管理相关的内容,并重点分析不同内存分配方式的区别和使用场景。

1. C/C++ 内存分布

在 C 和 C++ 中,内存可以分为多个区域,包括栈、堆、数据段、代码段等。这些区域分别用来存储不同类型的数据。通过以下示例代码,我们可以直观地理解这些区域的作用:

int globalVar = 1;           // 全局变量
static int staticGlobalVar = 1; // 静态全局变量

void Test() {
    static int staticVar = 1; // 静态局部变量
    int localVar = 1;         // 局部变量
    int num1[10] = {1, 2, 3, 4}; // 局部数组
    char char2[] = "abcd";    // 字符数组
    const char* pChar3 = "abcd"; // 字符指针常量
    int* ptr1 = (int*)malloc(sizeof(int) * 4);  // 动态分配内存
    int* ptr2 = (int*)calloc(4, sizeof(int));  // 动态分配并初始化
    int* ptr3 = (int*)realloc(ptr2, sizeof(int) * 4); // 重新分配内存
    free(ptr1); // 释放内存
    free(ptr3);
}

以下是对应变量在内存中的分布情况:

变量名 存储位置 存储段
globalVar 全局变量 数据段(静态区)
staticGlobalVar 静态全局变量 数据段(静态区)
staticVar 静态局部变量 数据段(静态区)
localVar 局部变量
num1 局部数组
char2 字符数组
*char2 数组元素存储位置
pChar3 指针变量
*pChar3 常量字符串 “abcd” 代码段(常量区)
ptr1 指针变量
*ptr1 动态分配内存
ptr2 指针变量
*ptr2 动态分配内存
ptr3 指针变量
*ptr3 动态分配内存
内存区域分类:

介绍主要的几个

  • 栈(Stack):存储局部变量(如 localVar),以及函数调用时的参数和返回值。
  • 堆(Heap):存储动态分配的内存(如通过 malloccallocrealloc 分配的内存)
  • 数据段(Data Segment):存储全局变量和静态变量(如 globalVarstaticGlobalVar)。
  • 代码段(Code Segment):存储程序的可执行代码以及只读常量(如 pChar3 所指向的字符串)。


2. C语言中的动态内存管理

C 语言提供了几种用于动态分配内存的函数:malloccallocreallocfree。这些函数用于在程序运行时动态地分配和释放内存。

2.1 malloc、calloc 和 realloc 的区别
  • malloc:用于分配指定大小的内存块,内存中的内容未初始化。
  • calloc:类似于 malloc,但会将内存初始化为零。它的参数为元素的数量和每个元素的大小。
  • realloc:用于调整之前分配的内存块的大小,如果新大小大于原大小,可能会移动内存块的位置。
示例代码:
int* ptr1 = (int*)malloc(sizeof(int) * 4);  // 分配4个int类型大小的内存块
int* ptr2 = (int*)calloc(4, sizeof(int));   // 分配并初始化4个int类型大小的内存块
int* ptr3 = (int*)realloc(ptr2, sizeof(int) * 4); // 重新分配内存
free(ptr1);
free(ptr3);
2.2 malloc 实现原理

glibc中malloc实现原理

malloc 底层通常通过操作系统的 brkmmap 系统调用分配内存。具体实现可能因平台和 C

标准库的不同而有所区别。在 GNU C 库(glibc)中,malloc通过维护一个自由链表来跟踪已分配和未分配的内存块,并根据请求的大小寻找合适的内存块进行分配。

3. C++ 内存管理

C++ 继承了 C 语言的内存管理方式,并在此基础上引入了 newdelete 操作符,提供更方便的动态内存管理机制。与 mallocfree 不同,newdelete 适用于对象的动态内存分配,并且会自动调用构造函数和析构函数

3.1 new 和 delete 操作符

在 C++ 中,newdelete 操作符可以用于动态分配和释放内置类型(如 intfloat 等)的内存。对于单个变量和数组,使用 newdelete 具有一些特定的规则,特别是在内存初始化和释放时。以下是对 newdelete 及其在数组中的使用进行的详细解析。

示例代码:
#include <iostream>

int main() {
    // 使用 new 动态分配单个 int,未初始化
    int* ptr = new int;   // 分配内存,未初始化,内容是随机值
    std::cout << "未初始化的值: " << *ptr << std::endl;

    // 使用 new 动态分配并初始化为 0
    int* ptrZero = new int();   // 初始化为 0
    std::cout << "初始化为 0 的值: " << *ptrZero << std::endl;

    // 使用 new 动态分配并初始化为 5
    int* ptrValue = new int(5); // 初始化为 5
    std::cout << "初始化为 5 的值: " << *ptrValue << std::endl;

    // 释放动态分配的单个内存
    delete ptr;
    delete ptrZero;
    delete ptrValue;

    // 使用 new 动态分配数组,未初始化
    int* arr = new int[5];  // 分配5个元素的数组,未初始化,内容是随机值
    for (int i = 0; i < 5; ++i) {
        std::cout << "arr[" << i << "] = " << arr[i] << std::endl;
    }

    // 使用 new 动态分配并初始化数组
    int* arrInit = new int[5]{1, 2, 3, 4, 5};  // 初始化数组,指定每个元素的初始值
    for (int i = 0; i < 5; ++i) {
        std::cout << "初始化的 arrInit[" << i << "] = " << arrInit[i] << std::endl;
    }

    // 释放动态分配的数组
    delete[] arr;
    delete[] arrInit;

    return 0;
}
代码解析:
1. 单个变量分配(未初始化):
int* ptr = new int;
  • 作用:动态分配一个 int,但不进行初始化。此时分配的内存包含随机值(未定义的内容)。
  • 输出*ptr 中的值是不确定的,可能会输出垃圾值。
2. 单个变量分配并初始化为 0:
int* ptrZero = new int();
  • 作用:通过使用 (),将分配的 int 初始化为 0。
  • 输出*ptrZero 输出的值为 0。
3. 单个变量分配并初始化为指定值:
int* ptrValue = new int(5);
  • 作用:使用 new 初始化分配的 int 为指定值 5。
  • 输出*ptrValue 的值为 5。
4. 释放内存:
delete ptr;
delete ptrZero;
delete ptrValue;
  • 作用delete 用于释放通过 new 分配的内存。如果不及时释放,可能会导致内存泄漏。每次 new 都必须有对应的 delete
5. 数组分配(未初始化):
int* arr = new int[5];
  • 作用:动态分配一个包含 5 个 int 元素的数组。数组中的元素不会被初始化,内存中包含随机值。
  • 输出:输出数组中每个元素 arr[i],这些值是未定义的。
6. 数组分配并初始化:
int* arrInit = new int[5]{1, 2, 3, 4, 5};
  • 作用:通过 {} 进行数组初始化,指定数组中每个元素的初始值。
  • 输出arrInit 数组的元素分别被初始化为 {1, 2, 3, 4, 5},并依次输出。
7. 释放数组内存:
delete[] arr;
delete[] arrInit;
  • 作用:对于通过 new 分配的数组,必须使用 delete[] 来释放内存。注意,不能使用 delete 来释放数组,否则会导致未定义行为。

关键点总结:

  1. new 的单个元素分配
  • 未初始化new int 分配的内存未初始化,包含随机值。
  • 初始化为 0new int() 分配的内存被初始化为 0。
  • 初始化为指定值new int(5) 将分配的内存初始化为指定的值(如 5)。
  1. new 的数组分配
  • 未初始化new int[5] 分配的数组元素不进行初始化,包含随机值。
  • 使用 {} 进行数组初始化new int[5]{1, 2, 3, 4, 5} 将数组每个元素初始化为指定值。
  1. 内存释放
  • 单个元素释放:使用 delete 释放通过 new 分配的单个元素内存。
  • 数组释放:必须使用 delete[] 来释放通过 new 分配的数组内存。否则可能会引发内存管理错误或未定义行为。
  1. 区别于 malloc/free
  • new 分配并初始化内存,而 malloc 只负责分配内存,不会进行初始化。
  • delete 负责释放内存并调用析构函数(如果是类对象),而 free 只负责释放内存。

4. operator new 与 operator delete

operator newoperator delete 是系统提供的全局函数,分别用于动态分配和释放内存。它们实际上是 newdelete 操作符的底层实现在 C++ 中,new 操作符首先调用 operator new 分配内存,然后调用构造函数初始化对象;而 delete 操作符首先调用析构函数清理对象,然后调用 operator delete 释放内存。

4.1 operator new 的实现原理

operator new 的实现原理可以用如下代码描述:

void* operator new(size_t size) {
    void* p;
    // 尝试分配 size 字节的内存
    while ((p = malloc(size)) == nullptr) {
        // 如果 malloc 分配失败,尝试执行内存不足的应对措施
        if (_callnewh(size) == 0) {
            // 如果没有用户设置的处理措施,抛出 std::bad_alloc 异常
            throw std::bad_alloc();
        }
    }
    return p;
}

可以看到,operator new 本质上是通过 malloc 来分配内存的。不同的是,如果内存分配失败,operator new 会尝试调用用户设置的内存不足处理程序(_callnewh()),而 malloc 只是简单返回 NULL

4.2 operator delete 的实现原理

operator delete 的实现则相对简单,它直接调用 free 来释放内存:

void operator delete(void* p) {
    free(p);
}

这两个类似的就不再介绍了

new T[N]的原理:

  1. 调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对象空间的申请
  2. 在申请的空间上执行N次构造函数

delete[]的原理:

  1. 在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理
  2. 调用operator delete[]释放空间,实际在operator delete[]中调用operator delete来释
    放空间

5. new 和 delete 的工作过程

5.1 内置类型的内存管理

对于内置类型(如 intfloat 等),newmalloc 在内存分配上是类似的。它们都分配指定大小的内存并返回指向该内存的指针。然而,newmalloc 的不同之处在于:

  • 单个元素的分配new 可以分配单个内置类型的内存,而 malloc 只能分配一块指定大小的内存。
  • 异常处理:当内存分配失败时,new 会抛出异常,而 malloc 则返回 NULL
示例代码:
int* p1 = new int;   // 分配单个int类型空间
delete p1;           // 释放内存

int* p2 = (int*)malloc(sizeof(int)); // 使用malloc分配内存
free(p2);            // 释放内存


5.2 自定义类型的内存管理

对于自定义类型,newdelete 的作用更加明显,因为它们除了分配和释放内存之外,还会自动调用构造函数和析构函数。这一特性使得 newdelete 成为管理复杂对象的首选。

5.2.1 new 的工作过程:
  1. 调用 operator new 分配内存:为对象分配所需的内存。
  2. 在已分配的内存上调用构造函数:通过构造函数来初始化对象。
5.2.2 delete 的工作过程:
  1. 调用析构函数:析构函数会清理对象占用的资源(如释放动态分配的内存等)。
  2. 调用 operator delete 释放内存:通过 free 或类似的机制将内存归还给操作系统。
示例代码:
class A {
public:
    A(int a) : _a(a) {
        std::cout << "Constructor called" << std::endl;
    }
    ~A() {
        std::cout << "Destructor called" << std::endl;
    }
private:
    int _a;
};

int main() {
    A* obj = new A(10);  // 动态分配并调用构造函数
    delete obj;          // 调用析构函数并释放内存
}


6. malloc/free 和 new/delete 的区别

malloc/freenew/delete 都是从堆上分配内存,并且都需要用户手动释放,但它们之间存在一些关键区别:

6.1 语法上的区别
  • malloc/free 是函数mallocfree 是 C 标准库中的函数,用于动态内存管理。
  • new/delete 是操作符newdelete 是 C++ 的内置操作符,主要用于对象的动态内存管理。
6.2 初始化的区别
  • malloc 不会初始化内存malloc 只是分配一块内存,而不负责初始化内容。如果想初始化,必须手动进行赋值操作或使用 calloc
  • new 会调用构造函数new 不仅分配内存,还会调用构造函数来初始化对象,因此适用于分配类对象时的动态内存管理。
6.3 内存分配失败的处理方式
  • malloc 分配失败返回 NULL:如果 malloc 无法分配内存,它会返回 NULL,程序员需要手动检查返回值。
  • new 分配失败抛出 std::bad_alloc 异常:当 new 失败时,它会抛出 std::bad_alloc 异常,程序员可以使用 try-catch 语句捕获异常,进行相应处理。
6.4 自定义类型的对象分配
  • malloc/free 不会调用构造函数和析构函数malloc 仅仅分配内存,无法初始化对象,也不会调用析构函数来清理对象的资源,因此需要手动处理对象的初始化和销毁。
  • new/delete 会调用构造函数和析构函数new 在分配内存后会调用构造函数,delete 在释放内存前会调用析构函数,适合处理类对象的动态内存分配和释放。
6.5 异常安全性与内存泄漏问题
  • new/delete 提供更好的异常安全性:由于 new 操作符会在对象构造失败时自动释放分配的内存,并抛出异常,因此相比 malloc/freenew/delete 更安全,能有效避免内存泄漏。
  • malloc/free 的内存管理需要额外小心:使用 malloc 时,由于不调用构造和析构函数,程序员需要手动处理内存释放和对象销毁,容易出现内存泄漏。
示例代码对比:
// 使用 malloc/free
A* obj1 = (A*)malloc(sizeof(A));  // 仅仅分配内存,不调用构造函数
free(obj1);                       // 仅仅释放内存,不调用析构函数

// 使用 new/delete
A* obj2 = new A(10);  // 分配内存并调用构造函数
delete obj2;          // 调用析构函数并释放内存

7. 定位 new 表达式 (Placement-new)

定位 new 表达式是一种高级用法,它允许在已分配的内存上构造对象,而不需要重新分配内存。通常用于内存池、嵌入式系统或者需要精细控制内存分配的场景中。

7.1 定位 new 的使用方式

定位 new 表达式的语法如下:

new (place_address) type;


其中 place_address 是要放置对象的内存地址,type 是要构造的对象类型。通常用在已经手动分配的内存(比如通过 malloc)上,避免重复分配内存。

示例代码:
class A {
public:
    A(int a = 0) : _a(a) {
        std::cout << "A() called" << std::endl;
    }
    ~A() {
        std::cout << "~A() called" << std::endl;
    }
private:
    int _a;
};

int main() {
    void* buffer = malloc(sizeof(A)); // 手动分配一块内存
    A* obj = new(buffer) A(10);       // 在指定的内存上构造对象
    obj->~A();                        // 手动调用析构函数
    free(buffer);                     // 释放内存
}


7.2 定位 new 的注意事项
  1. 手动调用析构函数:由于定位 new 表达式不负责释放内存,因此在对象生命周期结束时,必须显式调用对象的析构函数来清理资源。
  1. 内存释放:使用定位 new 时,必须手动释放内存(如使用 free)。定位 new 仅在已经存在的内存上构造对象,不会负责内存的分配与释放。
7.3 定位 new 的应用场景
  • 内存池管理:在高性能应用中(如游戏引擎、嵌入式系统),为了减少频繁的内存分配和释放,通常使用内存池。定位 new 允许在预分配的内存中灵活构造和销毁对象,提高了内存管理的效率
  • 嵌入式系统:在内存受限的环境中,定位 new 可以避免重复分配内存,节省开销,且提高了系统的性能。

结语

内存管理一直是 C/C++ 程序开发中至关重要的环节,它影响着程序的性能、稳定性与安全性。在本文中,我们深入探讨了 C/C++ 的内存结构、动态内存管理,以及 malloc/free 和 new/delete 的异同。通过这些详解,你不仅能够理解如何在不同的内存区域中分配和释放资源,还能够掌握如何在复杂的系统中有效管理对象的生命周期。对于我们每一个开发者来说,灵活运用这些内存管理技术,可以帮助你写出更加高效、可靠的程序。无论是面对日常开发中的内存泄漏问题,还是在高性能场景中构建内存池优化性能,都能让你在程序设计上更加游刃有余。

以上就是关于【C++篇】深入内存迷宫:C/C++ 高效内存管理全揭秘的内容啦,各位大佬有什么问题欢迎在评论区指正,或者私信我也是可以的啦,您的支持是我创作的最大动力!❤️

目录
相关文章
|
7天前
|
存储 缓存 编译器
【硬核】C++11并发:内存模型和原子类型
本文从C++11并发编程中的关键概念——内存模型与原子类型入手,结合详尽的代码示例,抽丝剥茧地介绍了如何实现无锁化并发的性能优化。
|
1月前
|
存储 监控 算法
Java内存管理深度剖析:从垃圾收集到内存泄漏的全面指南####
本文深入探讨了Java虚拟机(JVM)中的内存管理机制,特别是垃圾收集(GC)的工作原理及其调优策略。不同于传统的摘要概述,本文将通过实际案例分析,揭示内存泄漏的根源与预防措施,为开发者提供实战中的优化建议,旨在帮助读者构建高效、稳定的Java应用。 ####
39 8
|
2月前
|
存储 缓存 C语言
【c++】动态内存管理
本文介绍了C++中动态内存管理的新方式——`new`和`delete`操作符,详细探讨了它们的使用方法及与C语言中`malloc`/`free`的区别。文章首先回顾了C语言中的动态内存管理,接着通过代码实例展示了`new`和`delete`的基本用法,包括对内置类型和自定义类型的动态内存分配与释放。此外,文章还深入解析了`operator new`和`operator delete`的底层实现,以及定位new表达式的应用,最后总结了`malloc`/`free`与`new`/`delete`的主要差异。
56 3
|
2月前
|
缓存 算法 Java
本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制
在现代软件开发中,性能优化至关重要。本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制。通过调整垃圾回收器参数、优化堆大小与布局、使用对象池和缓存技术,开发者可显著提升应用性能和稳定性。
53 6
|
2月前
|
存储 编译器 Linux
【c++】类和对象(上)(类的定义格式、访问限定符、类域、类的实例化、对象的内存大小、this指针)
本文介绍了C++中的类和对象,包括类的概念、定义格式、访问限定符、类域、对象的创建及内存大小、以及this指针。通过示例代码详细解释了类的定义、成员函数和成员变量的作用,以及如何使用访问限定符控制成员的访问权限。此外,还讨论了对象的内存分配规则和this指针的使用场景,帮助读者深入理解面向对象编程的核心概念。
146 4
|
3月前
|
程序员 C++ 容器
在 C++中,realloc 函数返回 NULL 时,需要手动释放原来的内存吗?
在 C++ 中,当 realloc 函数返回 NULL 时,表示内存重新分配失败,但原内存块仍然有效,因此需要手动释放原来的内存,以避免内存泄漏。
|
3月前
|
存储 C语言 C++
【C++打怪之路Lv6】-- 内存管理
【C++打怪之路Lv6】-- 内存管理
56 0
【C++打怪之路Lv6】-- 内存管理
|
3月前
|
C++
C/C++内存管理(下)
C/C++内存管理(下)
55 0
|
3月前
|
存储 Linux C语言
C/C++内存管理(上)
C/C++内存管理(上)
44 0
|
2月前
|
存储 编译器 C语言
【c++丨STL】string类的使用
本文介绍了C++中`string`类的基本概念及其主要接口。`string`类在C++标准库中扮演着重要角色,它提供了比C语言中字符串处理函数更丰富、安全和便捷的功能。文章详细讲解了`string`类的构造函数、赋值运算符、容量管理接口、元素访问及遍历方法、字符串修改操作、字符串运算接口、常量成员和非成员函数等内容。通过实例演示了如何使用这些接口进行字符串的创建、修改、查找和比较等操作,帮助读者更好地理解和掌握`string`类的应用。
60 2