【C++篇】C++类与对象深度解析(五):友元机制、内部类与匿名对象的高级应用

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 【C++篇】C++类与对象深度解析(五):友元机制、内部类与匿名对象的高级应用

C++类和对象——全面指南

💬 欢迎讨论:如果你在学习过程中有任何问题或想法,欢迎在评论区留言,我们一起交流学习。你的支持是我继续创作的动力!

👍 点赞、收藏与分享:觉得这篇文章对你有帮助吗?别忘了点赞、收藏并分享给更多的小伙伴哦!你们的支持是我不断进步的动力!

🚀 分享给更多人:如果你觉得这篇文章对你有帮助,欢迎分享给更多对C++感兴趣的朋友,让我们一起进步!

4. 友元详解

在C++中,友元(friend)提供了一种突破类的访问限定符的机制,使得外部函数或其他类可以访问类的私有(private)受保护的成员(protected)。友元可以是友元函数友元类,而这种友元关系是在类定义中通过关键字 friend 显式声明的。

4.1 友元的基本概念
  • 友元函数:友元函数可以访问类的私有和受保护成员,但它并不是类的成员函数。
  • 友元类:某个类的所有成员函数都可以是另一个类的友元,允许访问该类的私有和受保护成员
  • 单向关系:友元关系是单向的,如果A类是B类的友元,B类的成员函数可以访问A类的私有成员,但A类不能访问B类的私有成员,除非B类也显式声明A类为友元。
  • 友元的局限性:虽然友元提供了便利,但它打破了类的封装性,增加了类之间的耦合,因此不宜滥用。

4.2 友元函数

友元函数是一个外部函数,但通过友元声明,它可以访问类的私有和受保护的成员。友元函数不属于类的成员函数,它可以在类的任意地方声明,而不受访问限定符(publicprivateprotected)的限制。

示例代码:友元函数访问两个类的私有成员
#include<iostream>
using namespace std;

// 前置声明,避免类A的友元函数不识别类B
class B;

class A {
    // 友元声明,允许函数 func 访问A类的私有成员
    friend void func(const A& aa, const B& bb);

private:
    int _a1 = 1;
    int _a2 = 2;
};

class B {
    // 友元声明,允许函数 func 访问B类的私有成员
    friend void func(const A& aa, const B& bb);

private:
    int _b1 = 3;
    int _b2 = 4;
};

// 友元函数定义,能够访问A和B类的私有成员
void func(const A& aa, const B& bb) {
    cout << "A::_a1: " << aa._a1 << endl;  // 访问A类的私有成员
    cout << "B::_b1: " << bb._b1 << endl;  // 访问B类的私有成员
}

int main() {
    A aa;
    B bb;
    func(aa, bb);  // 调用友元函数,访问A和B类的私有成员

    return 0;
}
输出:
A::_a1: 1
B::_b1: 3

解释

  • 函数 func 被声明为 AB 类的友元,因此它可以访问 A 类和 B 类的私有成员变量 _a1_b1
  • 虽然 func 是一个独立于类的外部函数,但通过友元声明,它获得了访问类的私有数据的权限。


4.3 友元类

友元类允许一个类的所有成员函数访问另一个类的私有和受保护成员。友元类的成员函数并不需要逐一声明为友元,只要类被声明为友元,所有的成员函数都能访问另一个类的私有和受保护成员。

示例代码:友元类的使用
#include<iostream>
using namespace std;

class A {
    // 友元类B声明,允许B类的所有成员函数访问A类的私有成员
    friend class B;

private:
    int _a1 = 1;
    int _a2 = 2;
};

class B {
public:
    // 可以访问A类的私有成员
    void func1(const A& aa) {
        cout << "A::_a1: " << aa._a1 << endl;  // 访问A类的私有成员
        cout << "B::_b1: " << _b1 << endl;     // 访问B类的私有成员
    }

    void func2(const A& aa) {
        cout << "A::_a2: " << aa._a2 << endl;  // 访问A类的私有成员
        cout << "B::_b2: " << _b2 << endl;     // 访问B类的私有成员
    }

private:
    int _b1 = 3;
    int _b2 = 4;
};

int main() {
    A aa;
    B bb;
    bb.func1(aa);  // 通过B类的成员函数访问A类的私有成员
    bb.func2(aa);  // 通过B类的成员函数访问A类的私有成员

    return 0;
}
输出:
A::_a1: 1
B::_b1: 3
A::_a2: 2
B::_b2: 4

解释

  • B 类被声明为 A 类的友元类,因此 B 类的所有成员函数都可以访问 A 类的私有成员 _a1_a2
  • 通过友元类声明,不需要逐个将 B 类的成员函数声明为 A 类的友元,只要 B 类是 A 类的友元,B 类的所有成员函数都可以访问 A 类的私有数据。

4.4 友元的特性与限制

  • 单向关系:友元关系是单向的,如果 AB 的友元,那么 B 类的成员可以访问 A 类的私有成员,但 A 类不能访问 B 类的私有成员,除非 B 类也将 A 类声明为友元。

示例:单向友元关系

class A;

class B {
    friend class A;  // B 声明 A 为友元
private:
    int _b1 = 1;
};

class A {
public:
    void accessB(B& bb) {
        // A 可以访问 B 的私有成员
        cout << "B::_b1: " << bb._b1 << endl;
    }
};

int main() {
    A aa;
    B bb;
    aa.accessB(bb);  // A 类访问 B 的私有成员
    return 0;
}


输出:

B::_b1: 1
  • 不具有传递性:友元关系不具有传递性。如果 AB 的友元,BC 的友元,A 不能访问 C 类的私有成员。
  • 友元增加耦合性:虽然友元机制提供了访问类私有成员的便利,但过度使用友元会导致类与类之间的耦合增加,破坏了类的封装性。因此,友元不宜滥用,应该谨慎使用。

4.5 友元函数与类的实际应用

友元在某些情况下能提供方便,比如当需要两个类之间进行紧密合作时,使用友元可以简化代码,减少冗长的接口设计。

示例:使用友元进行类间合作
#include<iostream>
using namespace std;

class Account;

class Transaction {
public:
    void deposit(Account& account, double amount);
    void withdraw(Account& account, double amount);
};

class Account {
    friend class Transaction;  // 声明 Transaction 类为友元类
public:
    Account(double balance) : _balance(balance) {}

    void showBalance() const {
        cout << "Balance: " << _balance << endl;
    }

private:
    double _balance;
};

void Transaction::deposit(Account& account, double amount) {
    account._balance += amount;  // 直接访问 Account 类的私有成员
}

void Transaction::withdraw(Account& account, double amount) {
    if (amount <= account._balance) {
        account._balance -= amount;
    } else {
        cout << "Insufficient balance" << endl;
    }
}

int main() {
    Account myAccount(1000.0);
    Transaction trans;

    trans.deposit(myAccount, 500.0);  // 存款
    myAccount.showBalance();          // 输出:1500

    trans.withdraw(myAccount, 200.0); // 取款
    myAccount.showBalance();          // 输出:1300

    return 0;
}
输出:
Balance: 1500
Balance: 1300

解释

  • Transaction 类被声明为 Account 类的友元类,因此 Transaction 类的成员函数 depositwithdraw 可以直接访问 Account 类的私有成员 _balance
  • 这种情况下,友元机制简化了类与类之间的合作,不必通过公共接口访问私有数据,减少了不必要的代码冗余。

总结

友元机制在C++中提供了一种打破类封装的方式,允许外部函数或类访问类的私有和受保护成员。它通过friend关键字来声明友元函数或友元类,使得类之间的合作更加简便。

友元函数和友元类都有其特定的用途,友元函数可以访问多个类的私有成员,而友元类则使得另一个类的所有成员函数都可以访问当前类的私有数据。

  • 友元关系是单向的,不具有传递性,过度使用友元会破坏类的封装性和增加类的耦合性,应该谨慎使用。

5. 内部类详解

内部类(Nested Class)是指一个类定义在另一个类的内部。在C++中,内部类和外部类是独立的类,尽管它们之间有一定的联系,但内部类不属于外部类的对象,它有自己的内存布局和独立性。使用内部类通常是为了封装和简化类之间的关联。

5.1 内部类的基本概念
  • 独立性:尽管内部类是定义在外部类的内部,但它是一个独立的类。外部类的对象并不包含内部类的对象。也就是说,创建外部类的对象时,并不会自动创建内部类的对象,内部类需要单独实例化。
  • 友元关系:内部类默认是外部类的友元类,这意味着内部类可以访问外部类的私有成员。
  • 封装:使用内部类可以将一些只在外部类内部使用的逻辑封装起来,使代码更加紧凑和可控。内部类可以定义在 privateprotected 访问限定符下,限制其他类对其的访问。

5.2 内部类的使用示例

以下是一个包含内部类的简单示例,展示了如何在外部类中定义内部类,以及如何让内部类访问外部类的私有成员。

示例代码
#include<iostream>
using namespace std;

class A {
private:
    static int _k;  // 外部类的静态成员
    int _h = 1;     // 外部类的非静态成员

public:
    // 定义内部类 B
    class B {
    public:
        // 内部类方法可以访问外部类的私有成员,因为 B 是 A 的友元类
        void foo(const A& a) {
            cout << "A::_k = " << _k << endl;   // 访问外部类的静态成员
            cout << "A::_h = " << a._h << endl; // 访问外部类的非静态成员
        }
    };
};

// 初始化外部类的静态成员
int A::_k = 1;

int main() {
    cout << "Size of A: " << sizeof(A) << endl;  // 输出 A 类的大小

    A::B b;  // 创建内部类 B 的对象

    A aa;    // 创建外部类 A 的对象
    b.foo(aa);  // 使用内部类对象调用其方法,访问外部类的私有成员

    return 0;
}
输出:
Size of A: 4
A::_k = 1
A::_h = 1

解释

  • 内部类 B 被定义在外部类 Apublic 区域中,但它依然是 A 的友元类,可以访问 A 类的私有成员变量 _k_h
  • 创建了 A::B b 来实例化内部类 B,然后通过内部类的成员函数 foo 访问外部类对象的私有成员。
  • sizeof(A) 表示 A 类的大小,由于 A 只有一个整数成员 _h,因此其大小为4字节。

5.3 封装与访问权限

内部类作为外部类的一部分,可以被放置在 privateprotected 访问区域中,这样可以控制内部类的可见性。

示例:将内部类放在 private 区域
#include<iostream>
using namespace std;

class Outer {
private:
    class Inner {  // 内部类定义在 private 区域
    public:
        void display() {
            cout << "Inner class method called." << endl;
        }
    };

public:
    void createInner() {
        Inner in;   // 外部类的方法中可以创建内部类的对象
        in.display();
    }
};

int main() {
    Outer outer;
    outer.createInner();  // 通过外部类的方法调用内部类的方法

    // Outer::Inner in;  // 错误!内部类在 private 区域,外部无法访问

    return 0;
}
输出:
Inner class method called.

解释

  • 在这个例子中,内部类 Inner 定义在 Outer 类的 private 区域,外部类的方法 createInner() 可以创建 Inner 类的对象并调用其方法。
  • 尝试在外部直接访问 Inner 类会导致编译错误,因为它是 private 的。

5.4 内部类的封装与应用场景

使用内部类的一个常见场景是当两个类紧密相关时,可以将一个类封装到另一个类中。这样做的目的是让外部类管理内部类的访问,使得内部类只为外部类所用。

场景:内部类作为外部类的专属工具类
#include<iostream>
using namespace std;

class Manager {
private:
    class Task {
    public:
        void performTask() {
            cout << "Performing task." << endl;
        }
    };

public:
    void assignTask() {
        Task t;  // 外部类方法可以使用内部类
        t.performTask();
    }
};

int main() {
    Manager mgr;
    mgr.assignTask();  // 调用外部类的方法,执行内部类中的任务逻辑

    return 0;
}
输出:
Performing task.

解释

  • 这里,Task 类被封装在 Manager 类的 private 区域,表示 Task 只为 Manager 类服务,外部无法直接访问它。
  • 这是一种封装技术,用于使 Task 类专属于 Manager 类,外部无法创建 Task 对象,只能通过 Manager 类的方法来间接使用它。

5.5 内部类的友元关系

内部类默认是外部类的友元类,这意味着内部类可以访问外部类的私有和受保护成员。这种设计允许内部类和外部类之间进行紧密的合作,使得内部类可以像外部类的成员函数一样访问其内部数据。

示例:内部类访问外部类的私有成员
#include<iostream>
using namespace std;

class Container {
private:
    int _data = 100;

public:
    // 定义内部类
    class Helper {
    public:
        void showData(const Container& c) {
            cout << "Container::_data = " << c._data << endl;  // 访问外部类的私有成员
        }
    };
};

int main() {
    Container c;
    Container::Helper h;  // 创建内部类对象

    h.showData(c);  // 调用内部类的方法,访问外部类的私有成员

    return 0;
}
输出:
Container::_data = 100

解释

  • Helper 类作为 Container 的内部类,默认是 Container 的友元,因此它可以访问 Container 类的私有成员 _data
  • 通过内部类的对象 h,可以调用 showData 方法来访问外部类 Container 的私有数据。

5.6 应用:求 1 + 2 + 3 + … + n

内部类可以用于一些特定场景下的封装和逻辑简化,比如下面的例子中,通过内部类 Sum 来计算 1 到 n 的累加和。


示例代码
#include<iostream>
using namespace std;

class Solution {
    // 内部类 Sum,用于进行累加操作
    class Sum {
    public:
        Sum() {
            _ret += _i;  // 每创建一个对象,累加一次当前的 _i
            ++_i;        // 自增 i
        }
    };

    static int _i;    // 用于计数的静态变量
    static int _ret;  // 用于存储结果的静态变量

public:
    int Sum_Solution(int n) {
        Sum arr[n];  // 创建 n 个 Sum 对象,触发累加逻辑
        return _ret; // 返回累加的结果
    }
};

// 初始化静态变量
int Solution::_i = 1;
int Solution::_ret = 0;

int main() {
    Solution sol;
    cout << "Sum of 1 to 5: " << sol.Sum_Solution(5) << endl;  // 1 + 2 + 3 + 4 + 5 = 15
    return 0;
}
输出:
Sum of 1 to 5: 15

解释

  • 内部类 Sum 在创建对象时会自动进行累加操作,创建 nSum 对象等价于对 1n 进行

累加。

  • 静态变量 _i 用于记录当前的计数,_ret 用于存储累加的结果。

总结

  • 内部类是一种封装机制,允许将类定义在另一个类的内部,从而限制内部类的可见性或封装内部逻辑。内部类与外部类独立,但它默认可以访问外部类的私有成员。
  • 内部类的主要优势是封装性紧密耦合。当一个类主要是为了另一个类服务时,将其设计为内部类可以减少外部依赖和接口冗余。
  • 内部类可以用于实现复杂的逻辑封装、类间的紧密合作、计算封装等多个场景,但应谨慎使用,避免过度增加类的复杂性。

6. 匿名对象详解

匿名对象是C++中的一种特殊对象,和普通的有名对象不同,匿名对象没有名字,仅在表达式中被使用,生命周期非常短暂。它的生命周期只限于当前语句,当语句执行结束后,匿名对象就会自动被销毁并调用析构函数。匿名对象的典型用法是临时定义对象,完成某项任务后立即销毁。

6.1 匿名对象的基本概念
  • 匿名对象的定义:匿名对象是通过直接调用构造函数创建的对象,而没有为其指定名字。形式上,它看起来像 A()A(1) 这样的表达式。
  • 生命周期:匿名对象的生命周期非常短暂,只有在当前表达式结束时存在,表达式执行完毕后,匿名对象立即调用析构函数被销毁。
  • 应用场景:匿名对象通常用于临时性操作,例如快速调用某个对象的成员函数或操作符,而不需要将该对象保存在变量中。
匿名对象 vs 有名对象
  • 有名对象:对象名(实参)
  • 例:A obj(1);
  • 生命周期:与作用域相关,当作用域结束时对象销毁。
  • 匿名对象:类型(实参)
  • 例:A(1);
  • 生命周期:只在当前表达式有效,随后立即销毁。
6.2 匿名对象的创建与销毁

在C++中,通过 A()A(1) 这样的语法直接调用构造函数来创建匿名对象,匿名对象没有名字,生命周期仅限于当前行,结束后立即调用析构函数进行销毁。

示例代码
#include<iostream>
using namespace std;

class A {
public:
    // 构造函数
    A(int a = 0) : _a(a) {
        cout << "A(int a) 构造函数被调用, _a = " << _a << endl;
    }

    // 析构函数
    ~A() {
        cout << "~A() 析构函数被调用, _a = " << _a << endl;
    }

private:
    int _a;
};

int main() {
    A aa1;  // 有名对象 aa1 的创建

    // 不能这样定义对象,因为编译器无法确定是函数声明还是对象定义
    // A aa1();

    // 创建匿名对象并立即销毁
    A();    
    A(1);   

    A aa2(2);  // 有名对象 aa2 的创建,生命周期为整个作用域

    // 匿名对象用于调用函数,完成任务后立即销毁
    Solution().Sum_Solution(10);

    return 0;
}
输出:
A(int a) 构造函数被调用, _a = 0
~A() 析构函数被调用, _a = 0
A(int a) 构造函数被调用, _a = 1
~A() 析构函数被调用, _a = 1
A(int a) 构造函数被调用, _a = 2
~A() 析构函数被调用, _a = 2

解释

  • A()A(1) 创建的是匿名对象,它们在当前语句结束后立即调用析构函数。
  • 有名对象 aa1aa2 是在整个作用域内存在的,它们在作用域结束时调用析构函数。
  • 匿名对象 的使用场景之一是调用某个方法或操作符后立即销毁,不占用额外的资源。

6.3 匿名对象的应用场景

6.3.1 匿名对象用于临时调用成员函数

匿名对象的一个常见应用场景是用来临时调用某个类的成员函数,执行完任务后不需要该对象的存在。例如:

class Solution {
public:
    int Sum_Solution(int n) {
        return n * (n + 1) / 2;
    }
};

int main() {
    // 使用匿名对象调用 Sum_Solution 函数
    int result = Solution().Sum_Solution(10);  // 匿名对象创建后立即销毁
    cout << "Sum of 1 to 10: " << result << endl;
    return 0;
}
输出:
Sum of 1 to 10: 55

解释

  • 匿名对象 Solution() 被创建,用于调用 Sum_Solution 函数。函数调用结束后,匿名对象立即销毁,不再占用资源。
  • 这是一种常见的设计模式,适用于不需要保存对象状态的场景。

6.3.2 匿名对象避免对象命名

在某些情况下,我们不需要为对象命名,只是想要使用对象来执行一些操作,匿名对象可以帮助避免命名冲突或不必要的命名。特别是在返回一个对象并立即使用时,匿名对象是理想的选择。

示例:返回匿名对象
class A {
public:
    A(int a) : _a(a) {
        cout << "A(int a) 构造函数被调用, _a = " << _a << endl;
    }

    ~A() {
        cout << "~A() 析构函数被调用, _a = " << _a << endl;
    }

private:
    int _a;
};

// 函数返回一个匿名对象
A createA() {
    return A(100);  // 返回匿名对象
}

int main() {
    createA();  // 调用 createA 函数,返回的匿名对象立即销毁
    return 0;
}
输出:
A(int a) 构造函数被调用, _a = 100
~A() 析构函数被调用, _a = 100

解释

  • 函数 createA 返回一个匿名对象,返回后立即销毁。
  • 匿名对象在不需要进一步使用的情况下,能够有效减少对象创建和销毁的负担。

6.4 匿名对象的注意事项

  1. 生命周期短暂:匿名对象的生命周期只在当前语句结束时有效,不能跨语句使用匿名对象。如果需要在多行代码中使用对象,必须创建有名对象。

错误示例:

A obj = A(1);  // 正确,有名对象 obj
A(1).foo();    // 匿名对象调用方法
// A(1);        // 错误:匿名对象无法在下一行使用

编译器解析问题:在C++中,有些语法可能导致编译器误判为函数声明而不是对象创建。因此,注意避免如下情况:

错误示例:

A aa1();  // 被误判为函数声明,实际上不是对象的创建

正确用法:

A aa1(1);  // 明确创建对象
  1. 匿名对象的返回值优化(RVO):现代C++编译器通常会对匿名对象进行优化,在返回对象时避免多余的拷贝操作。这种优化称为返回值优化(RVO)

总结

  • 匿名对象是没有名字的临时对象,生命周期非常短暂,通常用于一次性操作,如临时调用成员函数或返回值。
  • 匿名对象在表达式结束后立即调用析构函数销毁,适用于不需要持久化对象的场景。
  • 匿名对象避免了额外的命名和管理开销,在简化代码的同时提高了代码的简洁性和可读性。

写在最后

在本文中,我们详细探讨了C++中几个重要的概念:友元、内部类、以及匿名对象。我们首先介绍了友元机制,它提供了一种打破类封装性的方式,允许外部函数或其他类访问类的私有和受保护成员。虽然友元机制方便了类与类之间的合作,但也增加了类之间的耦合性,因此应谨慎使用。接着,我们探讨了内部类的概念,内部类不仅能帮助封装复杂的逻辑,还能让类与类之间紧密合作,尤其是在封装和简化类之间关联方面发挥了重要作用。最后,我们讨论了匿名对象,作为一种特殊的C++对象,它的生命周期非常短暂,常用于临时调用成员函数或避免对象命名。


通过这篇文章,希望你可以掌握这些高级C++特性,并理解如何在实际应用中使用它们来写出更加高效、简洁且可维护的代码。

以上就是关于C++类与对象深度解析(五):友元机制、内部类与匿名对象的高级应用的内容啦,各位大佬有什么问题欢迎在评论区指正,或者私信我也是可以的啦,您的支持是我创作的最大动力!❤️

目录
相关文章
|
18天前
|
数据可视化 数据挖掘 BI
团队管理者必读:高效看板类协同软件的功能解析
在现代职场中,团队协作的效率直接影响项目成败。看板类协同软件通过可视化界面,帮助团队清晰规划任务、追踪进度,提高协作效率。本文介绍看板类软件的优势,并推荐五款优质工具:板栗看板、Trello、Monday.com、ClickUp 和 Asana,助力团队实现高效管理。
44 2
|
3天前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
2月前
|
存储 编译器 C语言
【c++丨STL】string类的使用
本文介绍了C++中`string`类的基本概念及其主要接口。`string`类在C++标准库中扮演着重要角色,它提供了比C语言中字符串处理函数更丰富、安全和便捷的功能。文章详细讲解了`string`类的构造函数、赋值运算符、容量管理接口、元素访问及遍历方法、字符串修改操作、字符串运算接口、常量成员和非成员函数等内容。通过实例演示了如何使用这些接口进行字符串的创建、修改、查找和比较等操作,帮助读者更好地理解和掌握`string`类的应用。
60 2
|
2月前
|
设计模式 安全 数据库连接
【C++11】包装器:深入解析与实现技巧
本文深入探讨了C++中包装器的定义、实现方式及其应用。包装器通过封装底层细节,提供更简洁、易用的接口,常用于资源管理、接口封装和类型安全。文章详细介绍了使用RAII、智能指针、模板等技术实现包装器的方法,并通过多个案例分析展示了其在实际开发中的应用。最后,讨论了性能优化策略,帮助开发者编写高效、可靠的C++代码。
39 2
|
17天前
|
安全 编译器 C++
C++ `noexcept` 关键字的深入解析
`noexcept` 关键字在 C++ 中用于指示函数不会抛出异常,有助于编译器优化和提高程序的可靠性。它可以减少代码大小、提高执行效率,并增强程序的稳定性和可预测性。`noexcept` 还可以影响函数重载和模板特化的决策。使用时需谨慎,确保函数确实不会抛出异常,否则可能导致程序崩溃。通过合理使用 `noexcept`,开发者可以编写出更高效、更可靠的 C++ 代码。
23 0
|
17天前
|
存储 程序员 C++
深入解析C++中的函数指针与`typedef`的妙用
本文深入解析了C++中的函数指针及其与`typedef`的结合使用。通过图示和代码示例,详细介绍了函数指针的基本概念、声明和使用方法,并展示了如何利用`typedef`简化复杂的函数指针声明,提升代码的可读性和可维护性。
50 0
|
2月前
|
存储 编译器 C++
【c++】类和对象(下)(取地址运算符重载、深究构造函数、类型转换、static修饰成员、友元、内部类、匿名对象)
本文介绍了C++中类和对象的高级特性,包括取地址运算符重载、构造函数的初始化列表、类型转换、static修饰成员、友元、内部类及匿名对象等内容。文章详细解释了每个概念的使用方法和注意事项,帮助读者深入了解C++面向对象编程的核心机制。
111 5
|
2月前
|
存储 编译器 C++
【c++】类和对象(中)(构造函数、析构函数、拷贝构造、赋值重载)
本文深入探讨了C++类的默认成员函数,包括构造函数、析构函数、拷贝构造函数和赋值重载。构造函数用于对象的初始化,析构函数用于对象销毁时的资源清理,拷贝构造函数用于对象的拷贝,赋值重载用于已存在对象的赋值。文章详细介绍了每个函数的特点、使用方法及注意事项,并提供了代码示例。这些默认成员函数确保了资源的正确管理和对象状态的维护。
111 4
|
2月前
|
存储 编译器 Linux
【c++】类和对象(上)(类的定义格式、访问限定符、类域、类的实例化、对象的内存大小、this指针)
本文介绍了C++中的类和对象,包括类的概念、定义格式、访问限定符、类域、对象的创建及内存大小、以及this指针。通过示例代码详细解释了类的定义、成员函数和成员变量的作用,以及如何使用访问限定符控制成员的访问权限。此外,还讨论了对象的内存分配规则和this指针的使用场景,帮助读者深入理解面向对象编程的核心概念。
146 4
|
3月前
|
存储 编译器 对象存储
【C++打怪之路Lv5】-- 类和对象(下)
【C++打怪之路Lv5】-- 类和对象(下)
35 4

推荐镜像

更多