【Python篇】matplotlib超详细教程-由入门到精通(下篇)2

简介: 【Python篇】matplotlib超详细教程-由入门到精通(下篇)

【Python篇】matplotlib超详细教程-由入门到精通(下篇)1:https://developer.aliyun.com/article/1617468

7.4 自定义图例 (Legend)

除了基本的图例位置、字体大小和样式的设置,matplotlib 还提供了更多的自定义选项,帮助我们进一步控制图例的外观和表现形式。在数据可视化中,合理的图例能够帮助读者快速理解图表中的信息。

7.4.1 更改图例边框与透明度

我们可以通过 framealpha 设置图例的透明度,通过 edgecolor 设置边框颜色。

示例:修改图例边框颜色与透明度

import matplotlib.pyplot as plt

# 定义数据
x = [1, 2, 3, 4, 5]
y1 = [1, 4, 9, 16, 25]
y2 = [2, 3, 5, 7, 11]

# 创建图表
plt.plot(x, y1, label='数据 1', color='blue')
plt.plot(x, y2, label='数据 2', color='green')

# 自定义图例的样式
plt.legend(loc='upper left', fontsize=12, frameon=True, edgecolor='red', framealpha=0.5)

# 添加标题
plt.title('自定义图例边框颜色和透明度')

# 显示图表
plt.show()

解释:

  • edgecolor='red':将图例的边框设置为红色。
  • framealpha=0.5:将图例的背景设置为半透明,值越接近 1,透明度越低。

拓展:

  • 通过调节 framealpha,我们可以创建更柔和的图例,避免它遮挡住重要的图表内容。
  • edgecolor 可以帮助图例在复杂的背景图表中显得更加突出或和谐。

7.4.2 使用多个图例

有时候,我们的图表可能需要使用多个图例来区分不同的数据组。为了实现这一点,我们可以在同一张图表中放置多个图例。

示例:多图例展示

import matplotlib.pyplot as plt

# 定义数据
x = [1, 2, 3, 4, 5]
y1 = [1, 4, 9, 16, 25]
y2 = [2, 3, 5, 7, 11]
y3 = [10, 12, 14, 16, 18]

# 创建图表
line1, = plt.plot(x, y1, label='数据 1', color='blue')
line2, = plt.plot(x, y2, label='数据 2', color='green')

# 为第一个图例自定义样式并放置于图表的左上角
plt.legend(handles=[line1, line2], loc='upper left', title='主要数据')

# 再添加一个数据和图例
line3, = plt.plot(x, y3, label='数据 3', color='red')

# 使用 ax.legend() 来创建第二个图例,并放置于右上角
plt.gca().add_artist(plt.legend(handles=[line1, line2], loc='upper left'))
plt.legend(handles=[line3], loc='upper right', title='附加数据')

# 添加标题
plt.title('多图例展示示例')

# 显示图表
plt.show()

解释:

  • handles:指定要展示的线条对象,用于手动选择显示哪些数据系列。
  • add_artist():将第一个图例添加到当前的轴 (axes) 上,这样第二个图例可以独立添加。

拓展:

  • 多个图例的使用有助于在一张图表中展示大量数据时,避免混淆,保持数据的清晰和可读性。
  • 可以通过 add_artist() 方法将任意自定义的图例或其他元素添加到图表中。

7.4.3 动态更新图例

有时,在动态图表中,数据是动态变化的,图例可能需要根据数据的变化实时更新。我们可以通过动态调整图例的位置、内容和样式,使其与图表内容同步变化。

示例:动态更新图例

import matplotlib.pyplot as plt
import numpy as np
import time

# 初始化图表
plt.ion()  # 开启交互模式
fig, ax = plt.subplots()

x = np.linspace(0, 2 * np.pi, 100)
y = np.sin(x)

line, = ax.plot(x, y, label='sin(x)')  # 初始图形及图例

legend = ax.legend(loc='upper right')  # 初始化图例

# 动态更新图表
for i in range(50):
    y = np.sin(x + i / 10.0)
    line.set_ydata(y)  # 更新 Y 轴数据
    ax.set_title(f"当前帧: {i}")  # 更新标题
    legend.set_title(f"帧数 {i}")  # 动态更新图例标题
    fig.canvas.draw()  # 重新绘制图表
    fig.canvas.flush_events()  # 刷新图表显示
    time.sleep(0.1)  # 模拟数据变化的时间间隔

plt.ioff()  # 关闭交互模式
plt.show()  # 显示最终图表

解释:

  • legend.set_title():动态更新图例的标题,随时间变化。
  • 动态图表和图例的更新通过 canvas.draw()flush_events() 来实现。

拓展:

  • 动态图表在展示时间序列数据、监控数据变化时非常有用。通过图例的动态更新,可以使图表更加直观,帮助观众理解图表中的每一帧数据。

7.5 设置图表的标题、轴标签、注释和样式

matplotlib 提供了全面的定制选项来设置图表的标题、坐标轴标签和注释。通过调整字体、颜色、大小等参数,我们可以让图表更加清晰易懂。

示例:自定义图表标题与坐标轴标签样式

import matplotlib.pyplot as plt

# 定义数据
x = [1, 2, 3, 4, 5]
y = [1, 4, 9, 16, 25]

# 创建图表
plt.plot(x, y)

# 自定义标题和坐标轴标签的样式
plt.title('自定义标题', fontsize=20, fontweight='bold', color='purple')
plt.xlabel('自定义 X 轴标签', fontsize=14, fontstyle='italic', color='blue')
plt.ylabel('自定义 Y 轴标签', fontsize=14, fontstyle='italic', color='red')

# 显示图表
plt.show()

解释:

  • fontsize:设置字体大小。
  • fontweight:设置字体的粗细(例如 bold 表示加粗)。
  • fontstyle:设置字体样式(例如 italic 表示斜体)。
  • color:设置字体颜色。


拓展:

  • 标题、轴标签和图例的样式定制可以帮助你创建更具个性化的图表,并且可以与企业的品牌风格保持一致。

7.6 多坐标轴图表

在一些数据可视化任务中,我们可能需要在一个图表中显示多种不同类型的数据,而这些数据的数值范围有很大差异。为了让不同数据能够清晰显示,我们可以在图表中使用多坐标轴。

示例:双 Y 轴图表

import matplotlib.pyplot as plt

# 定义数据
x = [1, 2, 3, 4, 5]
y1 = [1, 4, 9, 16, 25]  # 第一组数据
y2 = [100, 200, 300, 400, 500]  # 第二组数据

# 创建图表,绘制第一组数据
fig, ax1 = plt.subplots()

ax1.plot(x, y1, 'b-')  # 蓝色实线表示 y1 数据
ax1.set_xlabel('X 轴')  # 设置 X 轴标签
ax1.set_ylabel('Y1 轴', color='b')  # 设置 Y 轴标签
ax1.tick_params('y', colors='b')  # 设置 Y 轴刻度颜色

# 创建第二个 Y 轴,绘制第二组数据
ax2 = ax1.twinx()
ax2.plot(x, y2, 'r--')  # 红色虚线表示 y2 数据
ax2.set_ylabel('Y2 轴', color='r')  # 设置第二个 Y 轴标签
ax2.tick_params('y', colors='r')  # 设置第二个 Y 轴刻度颜色

# 添加标题
plt.title('双 Y 轴图表示例')

# 显示图表
plt.show()

解释:

  • ax1.twinx():创建一个共享 X 轴但有独立 Y 轴的图表。
  • tick_params('y', colors='b'):设置 Y 轴刻度颜色与线条颜色匹配。

拓展:

  • 这种多坐标轴图表在展示例如温度和湿度、价格和销量等数据时非常有用。通过不同的 Y 轴,我们可以更直观地查看数据变化趋势。


7.7 绘制 3D 图形

matplotlib 也支持 3D 图形的绘制,通过 mpl_toolkits.mplot3d 模块,我们可以轻松创建 3D 折线图、3D 散点图等。

示例:绘制 3D 折线图

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np

# 创建 3D 图形对象
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

# 定义数据
x = np.linspace(-5, 5, 100)
y = np.linspace(-5, 5, 100)
z = np.sin(np.sqrt(x**2 + y**2))

# 绘制 3D 折线图
ax.plot(x, y, z)

# 设置标题和轴标签
ax.set_title('3D 折线图示例')
ax.set_xlabel('X 轴')
ax.set_ylabel('Y 轴')
ax.set_zlabel('Z 轴')

# 显示图表
plt.show()

解释:

  • projection='3d':指定绘制 3D 图形。
  • ax.plot(x, y, z):在三维坐标系中绘制折线图。
  • set_zlabel():设置 Z 轴标签。

拓展:

  • 3D 图表适用于展示多维度数据。你可以使用 plot_surface() 来绘制 3D 曲面,或者 scatter() 来绘制 3D 散点图。


7.9 创建动画

matplotlibanimation 模块可以用来创建简单的动画,特别是在数据动态变化的场景中,动画能够直观展示数据随时间变化的过程。

示例:创建简单动画

import matplotlib.pyplot as plt
import numpy as np
import matplotlib.animation as animation

# 初始化图表
fig, ax = plt.subplots()
x = np.linspace(0, 2 * np.pi, 100)
line, = ax.plot(x, np.sin(x))

# 动画更新函数
def update(frame):
    line.set_ydata(np.sin(x + frame / 10.0))  # 更新 y 数据
    return line,

# 创建动画
ani = animation.FuncAnimation(fig, update, frames=100, interval=50, blit=True)

# 显示动画
plt.show()

解释:

  • FuncAnimation():创建动画,frames 表示动画的帧数,interval 表示每帧之间的间隔时间。
  • update():动画每一帧的更新函数,用于动态更新图表数据。

以上就是关于【Python篇】matplotlib超详细教程-由入门到精通(下篇)的内容啦,各位大佬有什么问题欢迎在评论区指正,或者私信我也是可以的啦,您的支持是我创作的最大动力!❤️

目录
相关文章
|
28天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
20天前
|
数据可视化 DataX Python
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
46 8
|
20天前
Seaborn 教程-主题(Theme)
Seaborn 教程-主题(Theme)
59 7
|
20天前
|
Python
Seaborn 教程-模板(Context)
Seaborn 教程-模板(Context)
47 4
|
20天前
|
数据可视化 Python
Seaborn 教程
Seaborn 教程
42 5
|
29天前
|
IDE 程序员 开发工具
Python编程入门:打造你的第一个程序
迈出编程的第一步,就像在未知的海洋中航行。本文是你启航的指南针,带你了解Python这门语言的魅力所在,并手把手教你构建第一个属于自己的程序。从安装环境到编写代码,我们将一步步走过这段旅程。准备好了吗?让我们开始吧!
|
28天前
|
测试技术 开发者 Python
探索Python中的装饰器:从入门到实践
装饰器,在Python中是一块强大的语法糖,它允许我们在不修改原函数代码的情况下增加额外的功能。本文将通过简单易懂的语言和实例,带你一步步了解装饰器的基本概念、使用方法以及如何自定义装饰器。我们还将探讨装饰器在实战中的应用,让你能够在实际编程中灵活运用这一技术。
38 7
|
30天前
|
开发者 Python
Python中的装饰器:从入门到实践
本文将深入探讨Python的装饰器,这一强大工具允许开发者在不修改现有函数代码的情况下增加额外的功能。我们将通过实例学习如何创建和应用装饰器,并探索它们背后的原理和高级用法。
42 5
|
29天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
70 3