【Python篇】详细学习 pandas 和 xlrd:从零开始

简介: 【Python篇】详细学习 pandas 和 xlrd:从零开始

详细学习 pandasxlrd:从零开始

前言

数据处理和分析中,Excel 文件是最常见的数据格式之一。Python 提供了强大的库 pandas,可以轻松地处理 Excel 文件中的数据。同时,我们还可以使用 xlrd读取 Excel 文件,尤其是较旧格式的 .xls 文件。

本篇博客将从零开始,带你学习如何使用 pandasxlrd 来读取、处理、修改和保存 Excel 文件的数据。我们将详细讲解每一步,并附带代码示例和输出结果。


一、环境准备和安装

在开始学习之前,我们需要确保 Python 环境中已经安装了 pandasxlrd。你可以通过以下步骤安装这些库。

1.1 安装 pandasxlrd

打开命令行(Windows)或终端(macOS 和 Linux),输入以下命令来安装 pandasxlrd

pip install pandas xlrd

1.2 验证安装

安装完成后,你可以通过以下代码验证安装是否成功:

import pandas as pd
import xlrd

print(pd.__version__)  # 打印 pandas 的版本
print(xlrd.__version__)  # 打印 xlrd 的版本

如果没有报错,并且成功打印出版本号,说明安装成功。


二、pandasxlrd 的基础概念

在开始写代码之前,我们先了解一些 pandasxlrd 的基础概念。

2.1 什么是 pandas

pandas 是一个用于数据分析和处理的强大 Python 库。它的核心数据结构是 DataFrameSeries

  • DataFrame:一个二维表格,类似于电子表格或数据库中的表,具有行和列。
  • Series:一个一维数组,类似于表格中的一列数据。

2.2 什么是 xlrd

xlrd 是一个专门用于读取 Excel 文件的库,尤其是 .xls 格式的文件。pandas 依赖 xlrd 来读取这些文件的数据。


三、使用 pandas 读取 Excel 文件

3.1 读取 Excel 文件的基础方法

我们首先学习如何使用 pandas 读取一个 Excel 文件。假设我们有一个名为 example.xls 的 Excel 文件,它包含以下数据:

    Name  Age         City
0  Alice   25     New York
1    Bob   30  Los Angeles
2 Charlie   35     Chicago
 

代码示例:读取 Excel 文件

import pandas as pd

# 使用 pandas 读取 Excel 文件
df = pd.read_excel('example.xls', engine='xlrd')

# 显示前几行数据
print(df.head())

解释

  • pd.read_excel:这是 pandas 提供的读取 Excel 文件的函数。我们传入文件名 example.xlsengine='xlrd' 参数,xlrd 用于解析较旧格式的 .xls 文件。
  • df.head()head() 方法用于显示 DataFrame 的前 5 行数据,帮助我们快速查看数据内容。

输出示例

当你运行这段代码时,你会看到以下输出:

       Name  Age         City
0     Alice   25     New York
1       Bob   30  Los Angeles
2   Charlie   35     Chicago

四、深入理解 DataFrameSeries

4.1 什么是 DataFrame

DataFramepandas 中的核心数据结构之一,它是一个二维的表格,类似于 Excel 表格。每个 DataFrame 都有行索引和列标签。

示例:创建一个简单的 DataFrame
import pandas as pd

# 定义一个字典,表示表格中的数据
data = {
    'Name': ['Alice', 'Bob', 'Charlie'],
    'Age': [25, 30, 35],
    'City': ['New York', 'Los Angeles', 'Chicago']
}

# 将字典转换为 DataFrame
df = pd.DataFrame(data)

# 显示 DataFrame
print(df)

解释

  • 字典 data:我们创建了一个字典,其中每个键(如 'Name')代表一列数据,每个键对应的值是一个列表,表示这一列的所有数据。
  • pd.DataFrame(data)pandas 提供的 DataFrame 构造函数,用于将字典转换为 DataFrame。

输出示例

运行代码后,你将看到如下输出:

       Name  Age         City
0     Alice   25     New York
1       Bob   30  Los Angeles
2   Charlie   35     Chicago

4.2 什么是 Series

Seriespandas 中的一维数据结构,类似于 Excel 中的一列。每个 Series 都有一个索引和一组数据。

示例:从 DataFrame 中提取 Series
# 从 DataFrame 中提取 'Name' 列,作为一个 Series
names = df['Name']

# 显示 Series
print(names)

输出示例

运行代码后,你将看到如下输出:

0      Alice
1        Bob
2    Charlie
Name: Name, dtype: object

解释

  • df['Name']:我们使用列标签 'Name' 来提取 DataFrame 中的某一列,返回一个 Series
  • Name: Name, dtype: object:输出结果中显示了 Series 的名称和数据类型(这里是字符串 object)。

五、处理 DataFrame 数据

5.1 增加新列

我们可以向 DataFrame 中添加一列新数据,比如性别。

代码示例:增加一列数据
# 增加一列数据,表示这些人的性别
df['Gender'] = ['Female', 'Male', 'Male']

# 显示更新后的 DataFrame
print(df)

输出示例

运行代码后,你将看到如下输出:

     Name  Age         City  Gender
0     Alice   25     New York  Female
1       Bob   30  Los Angeles    Male
2   Charlie   35     Chicago    Male

5.2 删除列

如果你想删除 DataFrame 中的一列数据,可以使用 drop 方法。

代码示例:删除一列数据
# 删除 'City' 列
df = df.drop(columns=['City'])

# 显示更新后的 DataFrame
print(df)

输出示例

运行代码后,你将看到如下输出:

      Name  Age  Gender
0     Alice   25  Female
1       Bob   30    Male
2   Charlie   35    Male

六、保存数据到 Excel 文件

处理完数据后,你可能需要将结果保存到一个新的 Excel 文件中。

代码示例:写入 Excel 文件

# 将 DataFrame 保存到新的 Excel 文件中
df.to_excel('output.xlsx', index=False)

print("数据已保存到 output.xlsx")

解释

  • df.to_excelpandas 提供的 to_excel 方法用于将 DataFrame 保存到一个 Excel 文件中。
  • index=False:这个参数表示不要将行索引保存到文件中。

输出示例

运行代码后,终端中会显示:

数据已保存到 output.xlsx

并且,你的项目目录中会生成一个名为 output.xlsx 的 Excel 文件,内容如下:

     Name  Age  Gender
0     Alice   25  Female
1       Bob   30    Male
2   Charlie   35    Male

七、读取和合并多个 Excel 文件

7.1 场景概述

在实际项目中,你可能需要从多个 Excel 文件中读取数据,并将它们合并到一个 DataFrame 中。这在处理多个来源的数据时尤其有用。

7.2 代码示例:读取并合并多个 Excel 文件

假设你有多个 Excel 文件,它们有相同的结构,现在我们需要将这些文件合并到一个 DataFrame 中。

import pandas as pd
import glob

# 获取所有 .xls 文件路径
file_list = glob.glob('data/*.xls')

# 读取所有文件并合并为一个 DataFrame
df_list = [pd.read_excel(file, engine='xlrd') for file in file_list]
combined_df = pd.concat(df_list, ignore_index=True)

# 显示合并后的 DataFrame
print(combined_df.head())
详细解释
  1. glob.glob(‘data/*.xls’):使用 glob 模块查找 data 目录下的所有 .xls 文件,返回一个文件路径的列表。
  2. pd.read_excel(file, engine=‘xlrd’):使用 pandasread_excel 函数读取每个 Excel 文件,这里指定 xlrd 引擎来处理 .xls 文件。
  3. pd.concat(df_list, ignore_index=True):将所有读取的 DataFrame 合并为一个大的 DataFrame,ignore_index=True 表示忽略原来的行索引,重新生成连续的索引。
输出示例

假设你有三个 Excel 文件,每个文件的内容类似于:

File 1:
    Name  Age         City
0  Alice   25     New York

File 2:
    Name  Age         City
0    Bob   30  Los Angeles

File 3:
    Name  Age         City
0 Charlie   35     Chicago

合并后的 DataFrame 输出如下:

    Name  Age         City
0     Alice   25     New York
1       Bob   30  Los Angeles
2   Charlie   35     Chicago

7.3 实际应用场景

在项目中,你可以使用这个方法来合并多个 Excel 文件的数据,例如汇总多个部门的数据,或者处理分月份、分季度的财务报表。

八、数据清洗与缺失值处理

8.1 场景概述

在数据分析中,数据通常不完美,可能包含缺失值或异常值。你需要掌握如何清洗这些数据,以确保数据质量。

8.2 处理缺失数据

缺失值 是指在数据集中某些字段没有数据,这是常见的问题。我们可以选择删除包含缺失值的行,或者用其他值来填补缺失值。

代码示例:填充和删除缺失值
# 示例数据,假设从 Excel 读取的 DataFrame
data = {
    'Name': ['Alice', 'Bob', 'Charlie', None],
    'Age': [25, None, 35, 30],
    'City': ['New York', 'Los Angeles', None, 'Chicago']
}
df = pd.DataFrame(data)

# 查看原始数据
print("原始数据:\n", df)

# 填充缺失值
df_filled = df.fillna({'Name': '未知', 'Age': df['Age'].mean(), 'City': '未知'})
print("\n填充缺失值后的数据:\n", df_filled)

# 删除包含缺失值的行
df_dropped = df.dropna()
print("\n删除缺失值后的数据:\n", df_dropped)
详细解释
  1. 填充缺失值
  • df.fillna({‘Name’: ‘未知’, ‘Age’: df[‘Age’].mean(), ‘City’: ‘未知’}):使用字典为不同列指定填充值。Name 列的缺失值用 '未知' 填充,Age 列的缺失值用平均值填充,City 列的缺失值用 '未知' 填充。
  1. 删除包含缺失值的行:
  • df.dropna():删除包含任何缺失值的行,返回一个新的 DataFrame。
输出示例

原始数据:

      Name   Age         City
0     Alice  25.0     New York
1       Bob   NaN  Los Angeles
2   Charlie  35.0         None
3      None  30.0      Chicago

填充缺失值后的数据:

      Name   Age         City
0     Alice  25.0     New York
1       Bob  30.0  Los Angeles
2   Charlie  35.0          未知
3        未知  30.0      Chicago

删除缺失值后的数据:

      Name   Age       City
0     Alice  25.0   New York

9.3 实际应用场景

在项目中,数据清洗是必不可少的一步。你可以使用这些方法来处理数据集中的缺失值,确保数据完整性和一致性。


十、数据筛选与条件过滤

10.1 场景概述

有时你需要从大数据集中筛选出符合特定条件的数据,比如筛选出所有年龄大于 30 岁的人。

10.2 代码示例:筛选数据

# 示例数据
data = {
    'Name': ['Alice', 'Bob', 'Charlie', 'David'],
    'Age': [25, 30, 35, 28],
    'City': ['New York', 'Los Angeles', 'Chicago', 'San Francisco']
}
df = pd.DataFrame(data)

# 筛选年龄大于 30 岁的数据
filtered_df = df[df['Age'] > 30]

print("年龄大于 30 岁的数据:\n", filtered_df)
详细解释
  • df[df[‘Age’] > 30]:这是 pandas 中常见的条件筛选方法。它会返回一个新的 DataFrame,其中只包含满足条件(Age > 30)的行。
输出示例
    Name     Age    City
2   Charlie   35  Chicago

10.3 实际应用场景

在项目中,你可以使用这种条件筛选方法来对数据进行初步分析,或者提取出特定子集的数据用于进一步处理。


十一、高效的数据操作与分析

11.1 数据分组与聚合

数据分组和聚合是数据分析中非常常见的操作,它可以帮助你从大数据集中提取总结性信息。

代码示例:按城市分组并计算平均年龄
# 示例数据
data = {
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva'],
    'Age': [25, 30, 35, 28, 40],
    'City': ['New York', 'Los Angeles', 'Chicago', 'New York', 'Chicago']
}
df = pd.DataFrame(data)

# 按城市分组并计算平均年龄
grouped_df = df.groupby('City')['Age'].mean()

print("按城市分组后的平均年龄:\n", grouped_df)
详细解释
  • df.groupby(‘City’)[‘Age’].mean():按 City 列分组,然后计算每个组中 Age 列的平均值。groupbypandas 中的一个强大函数,常用于分组统计。
输出示例
 City
Chicago         37.5
Los Angeles     30.0
New York        26.5
Name: Age, dtype: float64

11.2 数据透视表(Pivot Table)

数据透视表是一种将数据重新排列为易于分析的格式的工具,在数据汇总和分析中非常有用。

代码示例:创建数据透视表
# 示例数据
data = {
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva'],
    'Age': [25, 30, 35, 28, 40],
    'City': ['New York', 'Los Angeles', 'Chicago', 'New York', 'Chicago'],
    'Gender': ['Female', 'Male', 'Male', 'Male', 'Female']
}
df = pd.DataFrame(data)

# 创建数据透视表,按城市和性别汇总平均年龄
pivot_table = pd.pivot_table(df, values='Age', index='City', columns='Gender', aggfunc='mean')

print("数据透视表:\n", pivot_table)
详细解释
  • pd.pivot_table(df, values=‘Age’, index=‘City’, columns=‘Gender’, aggfunc=‘mean’):创建一个数据透视表,按城市和性别分组,计算每组的平均年龄。
输出示例
Gender         Female   Male
City                          
Chicago         40.0   35.0
Los Angeles      NaN   30.0
New York        25.0   28.0


11.3 实际应用场景

在项目中,分组和数据透视表可以帮助你快速地对数据进行汇总和分析。例如,你可以按部门和性别统计员工的平均年龄,或者按产品和地区计算销售额的汇总。

以上就是关于【Python篇】详细学习 pandas 和 xlrd:从零开始的内容啦,各位大佬有什么问题欢迎在评论区指正,您的支持是我创作的最大动力!❤️


目录
相关文章
|
2月前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
65 3
|
2月前
|
安全 关系型数据库 测试技术
学习Python Web开发的安全测试需要具备哪些知识?
学习Python Web开发的安全测试需要具备哪些知识?
37 4
|
17天前
|
Python 容器
Python学习的自我理解和想法(9)
这是我在B站跟随千锋教育学习Python的第9天,主要学习了赋值、浅拷贝和深拷贝的概念及其底层逻辑。由于开学时间紧张,内容较为简略,但希望能帮助理解这些重要概念。赋值是创建引用,浅拷贝创建新容器但元素仍引用原对象,深拷贝则创建完全独立的新对象。希望对大家有所帮助,欢迎讨论。
|
8天前
|
Python
Python学习的自我理解和想法(10)
这是我在千锋教育B站课程学习Python的第10天笔记,主要学习了函数的相关知识。内容包括函数的定义、组成、命名、参数分类(必须参数、关键字参数、默认参数、不定长参数)及调用注意事项。由于开学时间有限,记录较为简略,望谅解。通过学习,我理解了函数可以封装常用功能,简化代码并便于维护。若有不当之处,欢迎指正。
|
19天前
|
存储 索引 Python
Python学习的自我理解和想法(6)
这是我在B站千锋教育学习Python的第6天笔记,主要学习了字典的使用方法,包括字典的基本概念、访问、修改、添加、删除元素,以及获取字典信息、遍历字典和合并字典等内容。开学后时间有限,内容较为简略,敬请谅解。
|
23天前
|
存储 程序员 Python
Python学习的自我理解和想法(2)
今日学习Python第二天,重点掌握字符串操作。内容涵盖字符串介绍、切片、长度统计、子串计数、大小写转换及查找位置等。通过B站黑马程序员课程跟随老师实践,非原创代码,旨在巩固基础知识与技能。
|
22天前
|
程序员 Python
Python学习的自我理解和想法(3)
这是学习Python第三天的内容总结,主要围绕字符串操作展开,包括字符串的提取、分割、合并、替换、判断、编码及格式化输出等,通过B站黑马程序员课程跟随老师实践,非原创代码。
|
19天前
|
Python
Python学习的自我理解和想法(7)
学的是b站的课程(千锋教育),跟老师写程序,不是自创的代码! 今天是学Python的第七天,学的内容是集合。开学了,时间不多,写得不多,见谅。
|
18天前
|
存储 安全 索引
Python学习的自我理解和想法(8)
这是我在B站千锋教育学习Python的第8天,主要内容是元组。元组是一种不可变的序列数据类型,用于存储一组有序的元素。本文介绍了元组的基本操作,包括创建、访问、合并、切片、遍历等,并总结了元组的主要特点,如不可变性、有序性和可作为字典的键。由于开学时间紧张,内容较为简略,望见谅。
|
19天前
|
存储 索引 Python
Python学习的自我理解和想法(4)
今天是学习Python的第四天,主要学习了列表。列表是一种可变序列类型,可以存储任意类型的元素,支持索引和切片操作,并且有丰富的内置方法。主要内容包括列表的入门、关键要点、遍历、合并、判断元素是否存在、切片、添加和删除元素等。通过这些知识点,可以更好地理解和应用列表这一强大的数据结构。