【高阶数据结构】深度探索二叉树进阶:二叉搜索树概念及其高效实现(三)

简介: 【高阶数据结构】深度探索二叉树进阶:二叉搜索树概念及其高效实现

【高阶数据结构】深度探索二叉树进阶:二叉搜索树概念及其高效实现(二)https://developer.aliyun.com/article/1617405


六、Binary_Search_Tree.h

#pragma once
#include <string>
template<class K>
    struct  BSTreeNode
    {
        BSTreeNode(const K& key = K())
            :_left(nullptr)
                , _right(nullptr)
                , _key(key)
            {}
        BSTreeNode<K>* _left;
        BSTreeNode<K>* _right;
        K _key;
    };
template<class K>
    class  BSTree
    {
        public:
        typedef BSTreeNode<K> Node;
        //插入操作
        bool Insert(const K& key)
        {
            if (_root == nullptr)
            {
                _root = new Node(key);
                return true;
            }
            Node* parent = nullptr;
            Node* cur = _root;
            while (cur)
            {
                if (cur->_key < key)
                {
                    parent = cur;
                    cur = cur->_right;
                }
                else if (cur->_key > key)
                {
                    parent = cur;
                    cur = cur->_left;
                }
                else
                {
                    return false;
                }
            }
            cur = new Node(key);
            if (parent->_key < key)
            {
                parent->_right = cur;
            }
            else if (parent->_key > key)
            {
                parent->_left = cur;
            }
            return true;
        }
        bool Erase(const K& key)
        {
            Node* parent = nullptr;
            Node* cur = _root;
            while (cur)
            {
                if (cur->_key < key)
                {
                    parent = cur;
                    cur = cur->_right;
                }
                else if (cur->_key > key)
                {
                    parent = cur;
                    cur = cur->_left;
                }
                else
                {
                    //找到位置
                    //删除
                    //先判断谁为空
                    if (cur->_left == nullptr)
                    {
                        if (cur == _root)
                        {
                            _root = cur->_right;
                        }
                        else
                        {
                            if (parent->_left == cur)
                            {
                                parent->_left = cur->_right;
                            }
                            else if (parent->_right == cur)
                            {
                                parent->_right = cur->_right;
                            }
                        }
                        delete cur;
                    }
                    else if (cur->_right == nullptr)
                    {
                        if (cur == _root)
                        {
                            _root = cur->_right;
                        }
                        else
                        {
                            if (parent->_left == cur)
                            {
                                parent->_right = cur->_left;
                            }
                            else if (parent->_right == cur)
                            {
                                parent->_left = cur->_left;
                            }
                        }
                        delete cur;
                    }
                    //替换法实现
                    else
                    {
                        Node* RightMinParent = cur;
                        Node* RightMin = cur->_right;
                        //找到右子树最大的值
                        while (RightMin->_left)
                        {
                            RightMinParent = RightMin;
                            RightMin = RightMin->_left;
                        }
                        //找到
                        swap(cur->_key, RightMin->_key);
                        if (RightMinParent->_left == RightMin)
                        {
                            RightMinParent->_left = RightMin->_right;
                        }
                        else
                        {
                            RightMinParent->_right = RightMin->_right;
                        }
                        delete RightMin;
                    }
                    return true;
                }
            }
            return false;
        }
        bool Find(const K& key)
        {
            Node* cur = _root;
            while (cur)
            {
                if (cur->_key < key)
                {
                    cur = cur->_right;
                }
                else if (cur->_key > key)
                {
                    cur = cur->_left;
                }
                else
                {
                    return false;
                }
            }
            return true;
        }
        void InOrder()
        {
            _InOrder(_root);
            cout << endl;
        }
        private:
        void _InOrder(Node* root)
        {
            if (root == nullptr)
            {
                return;
            }
            _InOrder(root->_left);
            cout << root->_key << " ";
            _InOrder(root->_right);
        }
        private:
        Node* _root = nullptr;
    };

感谢大家的观看!以上就是本篇文章的全部内容。我是店小二,希望这些高阶数据结构笔记能为你在学习旅途中提供帮助!

相关文章
|
1月前
|
存储 算法
数据结构与算法学习二二:图的学习、图的概念、图的深度和广度优先遍历
这篇文章详细介绍了图的概念、表示方式以及深度优先遍历和广度优先遍历的算法实现。
50 1
数据结构与算法学习二二:图的学习、图的概念、图的深度和广度优先遍历
|
12天前
|
C语言
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
60 8
|
1月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
18 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
1月前
|
存储 算法 搜索推荐
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
这篇文章主要介绍了顺序存储二叉树和线索化二叉树的概念、特点、实现方式以及应用场景。
19 0
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
|
1月前
|
Java
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(二)
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(二)
27 1
|
1月前
|
算法 Java C语言
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(一)
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(一)
23 1
|
1月前
|
存储 算法
探索数据结构:分支的世界之二叉树与堆
探索数据结构:分支的世界之二叉树与堆
|
1月前
|
存储 算法
数据结构与算法学习十六:树的知识、二叉树、二叉树的遍历(前序、中序、后序、层次)、二叉树的查找(前序、中序、后序、层次)、二叉树的删除
这篇文章主要介绍了树和二叉树的基础知识,包括树的存储方式、二叉树的定义、遍历方法(前序、中序、后序、层次遍历),以及二叉树的查找和删除操作。
23 0
|
13天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
88 9
|
4天前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
13 1

热门文章

最新文章