Python并发编程迷雾:IO密集型为何偏爱异步?CPU密集型又该如何应对?

简介: 在Python的并发编程世界中,没有万能的解决方案,只有最适合特定场景的方法。希望本文能够为你拨开迷雾,找到那条通往高效并发编程的光明大道。

在Python的并发编程领域,异步编程如同一股清风,吹散了传统多线程和多进程带来的迷雾,尤其在处理IO密集型任务时,异步编程展现出了无可比拟的优势。而对于CPU密集型任务,异步似乎并不是那么“合拍”,这背后的原因以及如何应对,正是本文将要探讨的重点。

IO密集型任务与异步编程的“天作之合”

IO密集型任务,如文件读写、网络请求等,往往伴随着大量的等待时间。在这些等待时间内,CPU处于闲置状态,如果能够在这段时间内执行其他任务,无疑将极大提升程序的整体效率。异步编程,特别是Python中的asyncio库,正是为此类场景量身打造。

示例代码:使用asyncio并发执行网络请求。

import asyncio
import aiohttp

async def fetch(session, url):
    async with session.get(url) as response:
        return await response.text()

async def main():
    urls = ['http://example.com', 'http://example.org', 'http://example.net']
    async with aiohttp.ClientSession() as session:
        tasks = [fetch(session, url) for url in urls]
        responses = await asyncio.gather(*tasks)
        for response in responses:
            print(f"Received {len(response)} bytes")

if __name__ == "__main__":
    asyncio.run(main())

上述代码中,我们定义了一个异步函数fetch用于网络请求,通过asyncio.gather并发执行多个请求,这样即使某个请求等待响应,其他请求也能继续执行,避免了不必要的等待时间。

CPU密集型任务的应对之道

然而,当面对CPU密集型任务,如大规模的数值计算或数据处理时,异步编程的优势便不再明显。Python的全局解释器锁(GIL)限制了多线程在CPU密集型任务上的效率,使得多线程在这些场景下无法充分利用多核处理器的潜力。

对于CPU密集型任务,多进程是一个更为有效的选择,因为每个进程拥有独立的内存空间,可以绕过GIL的限制,真正实现并行计算。

示例代码:使用multiprocessing并行执行计算密集型任务。

import multiprocessing

def calculate_square(numbers):
    return [n ** 2 for n in numbers]

if __name__ == '__main__':
    numbers = list(range(1, 1000001))
    with multiprocessing.Pool(processes=4) as pool:
        result = pool.apply_async(calculate_square, (numbers,))
        squares = result.get()
        print(f"Calculated squares of {len(squares)} numbers")

在上面的代码中,我们使用multiprocessing.Pool创建了一个包含4个进程的进程池,然后通过apply_async方法异步执行计算任务,最终获取计算结果。

结论:选择合适的并发策略

无论是IO密集型还是CPU密集型任务,选择合适的并发策略是关键。对于IO密集型任务,异步编程是首选,它能够充分利用等待时间执行其他任务;而对于CPU密集型任务,多进程则是打破GIL枷锁,实现真正并行计算的有效手段。理解并熟练掌握这些技术,将帮助我们在实际项目中做出更明智的选择,构建出既高效又稳定的并发程序。

在Python的并发编程世界中,没有万能的解决方案,只有最适合特定场景的方法。希望本文能够为你拨开迷雾,找到那条通往高效并发编程的光明大道。

相关文章
|
21天前
|
弹性计算 人工智能 架构师
阿里云携手Altair共拓云上工业仿真新机遇
2024年9月12日,「2024 Altair 技术大会杭州站」成功召开,阿里云弹性计算产品运营与生态负责人何川,与Altair中国技术总监赵阳在会上联合发布了最新的“云上CAE一体机”。
阿里云携手Altair共拓云上工业仿真新机遇
|
17天前
|
机器学习/深度学习 算法 大数据
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析
2024“华为杯”数学建模竞赛,对ABCDEF每个题进行详细的分析,涵盖风电场功率优化、WLAN网络吞吐量、磁性元件损耗建模、地理环境问题、高速公路应急车道启用和X射线脉冲星建模等多领域问题,解析了问题类型、专业和技能的需要。
2563 22
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析
|
15天前
|
人工智能 IDE 程序员
期盼已久!通义灵码 AI 程序员开启邀测,全流程开发仅用几分钟
在云栖大会上,阿里云云原生应用平台负责人丁宇宣布,「通义灵码」完成全面升级,并正式发布 AI 程序员。
|
13天前
|
存储 关系型数据库 分布式数据库
GraphRAG:基于PolarDB+通义千问+LangChain的知识图谱+大模型最佳实践
本文介绍了如何使用PolarDB、通义千问和LangChain搭建GraphRAG系统,结合知识图谱和向量检索提升问答质量。通过实例展示了单独使用向量检索和图检索的局限性,并通过图+向量联合搜索增强了问答准确性。PolarDB支持AGE图引擎和pgvector插件,实现图数据和向量数据的统一存储与检索,提升了RAG系统的性能和效果。
|
17天前
|
机器学习/深度学习 算法 数据可视化
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
2024年中国研究生数学建模竞赛C题聚焦磁性元件磁芯损耗建模。题目背景介绍了电能变换技术的发展与应用,强调磁性元件在功率变换器中的重要性。磁芯损耗受多种因素影响,现有模型难以精确预测。题目要求通过数据分析建立高精度磁芯损耗模型。具体任务包括励磁波形分类、修正斯坦麦茨方程、分析影响因素、构建预测模型及优化设计条件。涉及数据预处理、特征提取、机器学习及优化算法等技术。适合电气、材料、计算机等多个专业学生参与。
1556 16
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
|
19天前
|
编解码 JSON 自然语言处理
通义千问重磅开源Qwen2.5,性能超越Llama
击败Meta,阿里Qwen2.5再登全球开源大模型王座
826 14
|
14天前
|
人工智能 开发框架 Java
重磅发布!AI 驱动的 Java 开发框架:Spring AI Alibaba
随着生成式 AI 的快速发展,基于 AI 开发框架构建 AI 应用的诉求迅速增长,涌现出了包括 LangChain、LlamaIndex 等开发框架,但大部分框架只提供了 Python 语言的实现。但这些开发框架对于国内习惯了 Spring 开发范式的 Java 开发者而言,并非十分友好和丝滑。因此,我们基于 Spring AI 发布并快速演进 Spring AI Alibaba,通过提供一种方便的 API 抽象,帮助 Java 开发者简化 AI 应用的开发。同时,提供了完整的开源配套,包括可观测、网关、消息队列、配置中心等。
621 7
|
7天前
|
Docker 容器
Docker操作 (五)
Docker操作 (五)
170 69
|
7天前
|
Docker 容器
Docker操作 (三)
Docker操作 (三)
167 69
|
19天前
|
人工智能 自动驾驶 机器人
吴泳铭:AI最大的想象力不在手机屏幕,而是改变物理世界
过去22个月,AI发展速度超过任何历史时期,但我们依然还处于AGI变革的早期。生成式AI最大的想象力,绝不是在手机屏幕上做一两个新的超级app,而是接管数字世界,改变物理世界。
628 52
吴泳铭:AI最大的想象力不在手机屏幕,而是改变物理世界