深度学习之动作识别与分类

简介: 基于深度学习的动作识别与分类是指通过深度学习模型从视频或传感器数据中自动识别和分类人类动作的过程。这项技术广泛应用于视频监控、安全监控、体育分析、医疗康复、虚拟现实(VR)和增强现实(AR)等领域。

基于深度学习的动作识别与分类是指通过深度学习模型从视频或传感器数据中自动识别和分类人类动作的过程。这项技术广泛应用于视频监控、安全监控、体育分析、医疗康复、虚拟现实(VR)和增强现实(AR)等领域。以下是基于深度学习的动作识别与分类的关键技术和方法。

1. 基本原理

动作识别的核心任务是从视频序列或传感器数据中提取时空特征,并将其映射到特定的动作类别。这可以通过深度卷积神经网络(CNN)和递归神经网络(RNN)等深度学习方法实现。

2. 关键步骤

数据采集:通常的输入是视频序列或来自可穿戴设备的传感器数据(如加速度计或陀螺仪数据)。视频提供了丰富的时空信息,而传感器数据则对动作轨迹有较高的敏感性。

特征提取与建模:通过深度学习模型从视频帧或传感器数据中自动提取空间和时间维度的特征。

动作分类:将提取的特征输入分类器(如全连接层、支持向量机等)进行动作分类,输出每个动作的预测类别。

3. 动作识别的深度学习模型

深度学习在动作识别中通常使用两类主要模型:

时空卷积神经网络(CNN):

3D卷积网络(3D-CNN):直接在时空维度上进行卷积操作,能够同时捕捉视频中的空间和时间特征。例如,C3D模型通过将卷积核扩展到3D空间,从视频片段中捕获时空特征,较为适合短时动作识别。

双流网络(Two-Stream Networks):一个流处理RGB图像的空间信息,另一个流处理光流(Optical Flow)图像的时间信息,通过融合这两条流的特征进行动作识别。代表性模型如Two-Stream CNN。

时序模型(RNN/LSTM/GRU):

递归神经网络(RNN):对视频中的序列信息进行建模,用于处理视频帧之间的时间依赖性。但RNN容易出现梯度消失问题,较少单独使用。

长短时记忆网络(LSTM):LSTM解决了RNN的梯度消失问题,擅长捕捉长时间的依赖关系,能够在视频动作识别中处理长时间序列数据,应用广泛。

门控循环单元(GRU):与LSTM相似,但更为轻量,适合处理动作识别中的时间序列数据。

基于时序卷积的模型:

时间卷积网络(TCN):TCN是一种利用卷积操作代替RNN的模型,通过卷积层捕捉时间序列中的长短期依赖关系,在动作识别中表现优异。

基于Transformer的模型:

视频Transformer:近年兴起的Transformer模型通过自注意力机制有效建模序列中的长程依赖。在动作识别领域,Transformer通过捕捉视频中的全局时空依赖,可以显著提升识别的准确性,代表模型如TimeSformer和Video Swin Transformer。

4. 常用方法

关键帧选择:在动作识别中,关键帧捕捉至关重要,可以通过动作显著性检测或光流信息选择视频中的关键帧,提高效率。

动作模板与图像序列匹配:通过提取每一帧或视频片段中的关键特征,再与预定义的动作模板进行匹配,进行动作识别。

骨架表示法(Pose Estimation):通过姿态估计技术获取视频中人体的关节点坐标(骨架信息),然后将这些关节点的时空信息输入到深度学习模型中进行动作分类。该方法在遮挡、场景复杂时表现更稳定,适用于健身、体育、医疗康复等应用场景。

5. 动作识别中的挑战

动作的复杂性:不同动作可能具有相似的姿态或轨迹,使得区分难度增加,特别是在动作具有较多细节变化时(如复杂体育动作)。

背景与遮挡:复杂的背景和人体遮挡会干扰模型对动作的识别,需要利用先进的视觉模型或姿态估计技术进行处理。

时序依赖问题:长时间视频中的动作识别需要模型能够捕捉长期时间依赖,特别是对于连续动作或交错动作的识别。

6. 数据集与评估

常用于动作识别的公开数据集包括:

UCF-101:包含101类动作的视频数据集,是动作识别领域的经典数据集之一。

HMDB-51:包含51类动作,视频中动作的场景多样,具有较高的挑战性。

Kinetics:包含400类以上动作的大规模视频数据集,广泛用于训练和评估深度学习模型。

NTU RGB+D:包含RGB、深度图像以及人体骨架数据,用于动作识别和人体姿态估计。

7. 应用场景

视频监控与安防:在安防领域,动作识别技术可以自动检测监控视频中的异常行为(如打斗、偷窃等),提供实时的安全预警。

体育动作分析:通过对运动员的动作进行识别和分类,可以进行自动化的技术分析,提升训练质量。

智能健身系统:实时识别用户的动作姿态,并提供即时反馈,帮助纠正错误动作。

虚拟现实与增强现实:在VR/AR环境中,动作识别有助于捕捉用户的行为,实现更加自然的交互。

医疗康复:通过识别患者的动作轨迹,辅助医生评估康复进度,或在家庭康复中提供实时指导。

相关文章
|
机器学习/深度学习 编解码 人工智能
人脸表情[七种表情]数据集(15500张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
本数据集包含15,500张已划分、已标注的人脸表情图像,覆盖惊讶、恐惧、厌恶、高兴、悲伤、愤怒和中性七类表情,适用于YOLO系列等深度学习模型的分类与检测任务。数据集结构清晰,分为训练集与测试集,支持多种标注格式转换,适用于人机交互、心理健康、驾驶监测等多个领域。
|
2月前
|
机器学习/深度学习 人工智能 监控
河道塑料瓶识别标准数据集 | 科研与项目必备(图片已划分、已标注)| 适用于YOLO系列深度学习分类检测任务【数据集分享】
随着城市化进程加快和塑料制品使用量增加,河道中的塑料垃圾问题日益严重。塑料瓶作为河道漂浮垃圾的主要类型,不仅破坏水体景观,还威胁水生生态系统的健康。传统的人工巡查方式效率低、成本高,难以满足实时监控与治理的需求。
|
2月前
|
机器学习/深度学习 传感器 人工智能
火灾火焰识别数据集(2200张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
在人工智能和计算机视觉的快速发展中,火灾检测与火焰识别逐渐成为智慧城市、公共安全和智能监控的重要研究方向。一个高质量的数据集往往是推动相关研究的核心基础。本文将详细介绍一个火灾火焰识别数据集,该数据集共包含 2200 张图片,并已按照 训练集(train)、验证集(val)、测试集(test) 划分,同时配有对应的标注文件,方便研究者快速上手模型训练与评估。
火灾火焰识别数据集(2200张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
|
2月前
|
机器学习/深度学习 人工智能 自动驾驶
7种交通场景数据集(千张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
在智能交通与自动驾驶技术快速发展的今天,如何高效、准确地感知道路环境已经成为研究与应用的核心问题。车辆、行人和交通信号灯作为城市交通系统的关键元素,对道路安全与交通效率具有直接影响。然而,真实道路场景往往伴随 复杂光照、遮挡、多目标混杂以及交通信号状态多样化 等挑战,使得视觉识别与检测任务难度显著增加。
|
2月前
|
机器学习/深度学习 人工智能 监控
坐姿标准好坏姿态数据集(图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
坐姿标准好坏姿态数据集的发布,填补了计算机视觉领域在“细分健康行为识别”上的空白。它不仅具有研究价值,更在实际应用层面具备广阔前景。从青少年的健康教育,到办公室的智能提醒,再到驾驶员的安全监控和康复训练,本数据集都能发挥巨大的作用。
坐姿标准好坏姿态数据集(图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
|
2月前
|
机器学习/深度学习 编解码 人工智能
102类农业害虫数据集(20000张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
在现代农业发展中,病虫害监测与防治 始终是保障粮食安全和提高农作物产量的关键环节。传统的害虫识别主要依赖人工观察与统计,不仅效率低下,而且容易受到主观经验、环境条件等因素的影响,导致识别准确率不足。
|
1月前
|
机器学习/深度学习 数据采集 编解码
基于深度学习分类的时相关MIMO信道的递归CSI量化(Matlab代码实现)
基于深度学习分类的时相关MIMO信道的递归CSI量化(Matlab代码实现)
|
2月前
|
机器学习/深度学习 自动驾驶 算法
道路表面缺陷数据集(裂缝/井盖/坑洼)(6000张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
随着城市化与交通运输业的快速发展,道路基础设施的健康状况直接关系到出行安全与城市运行效率。长期高强度的使用、气候变化以及施工质量差异,都会导致道路表面出现裂缝、坑洼、井盖下沉及修补不良等缺陷。这些问题不仅影响驾驶舒适度,还可能引发交通事故,增加道路养护成本。
道路表面缺陷数据集(裂缝/井盖/坑洼)(6000张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
|
机器学习/深度学习 人工智能 编解码
AI虫子种类识别数据集(近3000张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
本数据集包含近3000张已划分、标注的虫子图像,适用于YOLO系列模型的目标检测与分类任务。涵盖7类常见虫子,标注采用YOLO格式,结构清晰,适合农业智能化、小样本学习及边缘部署研究。数据来源多样,标注精准,助力AI虫害识别落地应用。
|
11月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的地面垃圾识别分类技术
AI垃圾分类系统结合深度学习和计算机视觉技术,实现高效、精准的垃圾识别与自动分类。系统集成高精度图像识别、多模态数据分析和实时处理技术,适用于市政环卫、垃圾处理厂和智能回收设备,显著提升管理效率,降低人工成本。
791 1
基于深度学习的地面垃圾识别分类技术
下一篇
oss教程