基于无线传感器网络的节点分簇算法matlab仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。

1.程序功能描述
对传感器网络进行分簇,在分簇过程中考量的有节点能量状态、节点拓扑位置、孤立节点删除等条件。与LEACH算法比较,对比如下几个方面指标:

1.网络从初始状态直到首个节点因能量耗尽而死亡的持续时间。

2.显示了随着时间的变化,一些节点开始死亡,整个网络的可用率下降的趋势情况。实验的终止条件为当网络可用节点下降至 75%时。

3.随时间变化时网络所有节点能量消耗情况。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行
1.jpeg
2.jpeg

3.核心程序
``` STATISTICS.COUNTCHS(ij+1) = CH_num;
%簇内成员选择簇头模块(即簇的形成模块)
for c=1:1:Cluster-1
xr(c)=0;
end
yr = 0;
zr = 0;
for i=1:1:Node
if Snode(i).type=='N' && Snode(i).E>0
if Cluster-1>=1
min_dis = sqrt( (Snode(i).xd-Snode(Node+1).xd)^2 + (Snode(i).yd-Snode(Node+1).yd)^2 );
min_dis_cluster = 0;
for c=1:Cluster-1
temp = min(min_dis,sqrt((Snode(i).xd-C(c).xd)^2 + (Snode(i).yd-C(c).yd)^2 ));
if temp do
Snode(i).E=Snode(i).E - (ETX(NByteByte) + EmpNByteByte(min_dis min_dis min_dis min_dis));
end
if min_dis <= do
Snode(i).E=Snode(i).E - ETX(NByteByte) + EfsNByteByte( min_dis min_dis);
end
ch_packet = ch_packet+1;
end
%簇头的能量消耗
Snode(i).min_dis = min_dis;
Snode(i).min_dis_cluster = min_dis_cluster;
else
yr = yr+1;
if min_dis>do
Snode(i).E=Snode(i).E-(ETX(NByteByte) + EmpNByteByte( min_dis min_dis min_dis min_dis));
end
if min_dis<=do
Snode(i).E=Snode(i).E-(ETX(NByteByte) + EfsNByteByte( min_dis min_dis));
end
bs_packet=bs_packet+1;
end
end
end

end

LIVEs = Node - STATISTICS.DEAD;
ind1 = find(abs(LIVEs - 199)<5);%一个死亡节点
ind2 = find(abs(LIVEs - 150)<5);%存活75%节点
T1 = ind1(1);
T2 = ind2(1);

figure
plot(LIVEs,'b');
hold on
plot(T1ones(1,200),0:199,'r');
hold on
plot(1:T1,199
ones(size([1:T1])),'r');
hold on
plot(T2ones(1,151),0:150,'r');
hold on
plot(1:T2,150
ones(size([1:T2])),'r');
hold on
xlabel('x(time)');
ylabel('y(live)');
title('首个节点因能量耗尽而死亡的持续时间');
axis([0,500,0,220]);
text(T1,199,['1个死亡节点']);
text(T2,150,['25%死亡节点']);

figure
plot(Egc,'b');
xlabel('x(time)');
ylabel('y(consumption)');
title('LEACH的网络能量消耗对比');
axis([0,500,0,800]);
save R0.mat Egc LIVEs T1 T2
12_031m

```

4.本算法原理
无线传感器网络(Wireless Sensor Networks, WSNs)由大量部署在监测区域内的微型传感器节点组成,通过无线通信方式形成一个多跳的自组织网络系统。其目的是协作地感知、采集和处理网络覆盖区域中被感知对象的信息,并发送给观察者。在WSNs中,节点分簇是一种重要的网络拓扑控制方法,能有效提高网络的可扩展性、能效和生命周期。

4.1节点分簇算法的基本概念

   节点分簇是将网络中的节点划分为不同的簇,每个簇由一个簇头(Cluster Head, CH)和多个簇成员(Cluster Members, CMs)组成。簇头负责管理和协调簇内的成员节点,同时负责与其他簇头或基站(Base Station, BS)进行通信。通过分簇,可以实现以下目标:

能量高效:簇头可以进行数据融合,减少传输的数据量,从而节省能量。
可扩展性:簇结构可以适应网络规模的变化。
提高网络生命周期:通过轮换簇头的方式,可以均衡网络中的能量消耗。

4.2节点分簇算法实现步骤
整个网络有一个汇聚节点(Sink节点),能量足够大,相当于基站,其功率足以发送信息至全网节点,Sink节点和簇头信息交换,整个网络共有n个节点。

(1) 在初始状态下,网内各节点向Sink节点发送能量状态信息。

(2) 汇聚节点收到各节点的能量状态信息后,计算平均能量、最大能量,据此标识各节点为强节点或弱节点。若节点i的能量E(i)≥Eav,则标识为强节点,其标识S(i)=1;若E(i)<Eav,则标识为若节点,其标识S(i)=0。

ccc4c717a5894c44ccdb69c8bb647ef2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

(4) 具有最大权值的未加入簇的强节点声明为簇头,利用欧氏距离分簇,重复这一过程,直到所有的节点都被分配入簇。仅当已无强节点剩余时,弱节点方能担当簇头的备选对象。

(5) 若只有单一簇头而没有簇成员,则该簇头认为是异常孤立节点,直接删除。

(6) 经过一轮的时间段,重复(2)~(6)过程以开始下一轮的分簇。

相关文章
|
6天前
|
算法 Serverless
基于魏格纳函数和焦散线方法的自加速光束matlab模拟与仿真
本项目基于魏格纳函数和焦散线方法,使用MATLAB 2022A模拟自加速光束。通过魏格纳函数法生成多种自加速光束,并设计相应方法,展示仿真结果。核心程序包括相位和幅度的计算、光场分布及拟合分析,实现对光束传播特性的精确控制。应用领域涵盖光学成像、光操控和光束聚焦等。 关键步骤: 1. 利用魏格纳函数计算光场分布。 2. 模拟并展示自加速光束的相位和幅度图像。 3. 通过拟合分析,验证光束加速特性。 该算法原理基于魏格纳函数描述光场分布,结合数值模拟技术,实现对光束形状和传播特性的精确控制。通过调整光束相位分布,可改变其传播特性,如聚焦或加速。
|
3天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
5天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
4天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
253 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
150 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
121 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)