基于无线传感器网络的节点分簇算法matlab仿真

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。

1.程序功能描述
对传感器网络进行分簇,在分簇过程中考量的有节点能量状态、节点拓扑位置、孤立节点删除等条件。与LEACH算法比较,对比如下几个方面指标:

1.网络从初始状态直到首个节点因能量耗尽而死亡的持续时间。

2.显示了随着时间的变化,一些节点开始死亡,整个网络的可用率下降的趋势情况。实验的终止条件为当网络可用节点下降至 75%时。

3.随时间变化时网络所有节点能量消耗情况。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行
1.jpeg
2.jpeg

3.核心程序
``` STATISTICS.COUNTCHS(ij+1) = CH_num;
%簇内成员选择簇头模块(即簇的形成模块)
for c=1:1:Cluster-1
xr(c)=0;
end
yr = 0;
zr = 0;
for i=1:1:Node
if Snode(i).type=='N' && Snode(i).E>0
if Cluster-1>=1
min_dis = sqrt( (Snode(i).xd-Snode(Node+1).xd)^2 + (Snode(i).yd-Snode(Node+1).yd)^2 );
min_dis_cluster = 0;
for c=1:Cluster-1
temp = min(min_dis,sqrt((Snode(i).xd-C(c).xd)^2 + (Snode(i).yd-C(c).yd)^2 ));
if temp do
Snode(i).E=Snode(i).E - (ETX(NByteByte) + EmpNByteByte(min_dis min_dis min_dis min_dis));
end
if min_dis <= do
Snode(i).E=Snode(i).E - ETX(NByteByte) + EfsNByteByte( min_dis min_dis);
end
ch_packet = ch_packet+1;
end
%簇头的能量消耗
Snode(i).min_dis = min_dis;
Snode(i).min_dis_cluster = min_dis_cluster;
else
yr = yr+1;
if min_dis>do
Snode(i).E=Snode(i).E-(ETX(NByteByte) + EmpNByteByte( min_dis min_dis min_dis min_dis));
end
if min_dis<=do
Snode(i).E=Snode(i).E-(ETX(NByteByte) + EfsNByteByte( min_dis min_dis));
end
bs_packet=bs_packet+1;
end
end
end

end

LIVEs = Node - STATISTICS.DEAD;
ind1 = find(abs(LIVEs - 199)<5);%一个死亡节点
ind2 = find(abs(LIVEs - 150)<5);%存活75%节点
T1 = ind1(1);
T2 = ind2(1);

figure
plot(LIVEs,'b');
hold on
plot(T1ones(1,200),0:199,'r');
hold on
plot(1:T1,199
ones(size([1:T1])),'r');
hold on
plot(T2ones(1,151),0:150,'r');
hold on
plot(1:T2,150
ones(size([1:T2])),'r');
hold on
xlabel('x(time)');
ylabel('y(live)');
title('首个节点因能量耗尽而死亡的持续时间');
axis([0,500,0,220]);
text(T1,199,['1个死亡节点']);
text(T2,150,['25%死亡节点']);

figure
plot(Egc,'b');
xlabel('x(time)');
ylabel('y(consumption)');
title('LEACH的网络能量消耗对比');
axis([0,500,0,800]);
save R0.mat Egc LIVEs T1 T2
12_031m

```

4.本算法原理
无线传感器网络(Wireless Sensor Networks, WSNs)由大量部署在监测区域内的微型传感器节点组成,通过无线通信方式形成一个多跳的自组织网络系统。其目的是协作地感知、采集和处理网络覆盖区域中被感知对象的信息,并发送给观察者。在WSNs中,节点分簇是一种重要的网络拓扑控制方法,能有效提高网络的可扩展性、能效和生命周期。

4.1节点分簇算法的基本概念

   节点分簇是将网络中的节点划分为不同的簇,每个簇由一个簇头(Cluster Head, CH)和多个簇成员(Cluster Members, CMs)组成。簇头负责管理和协调簇内的成员节点,同时负责与其他簇头或基站(Base Station, BS)进行通信。通过分簇,可以实现以下目标:
AI 代码解读

能量高效:簇头可以进行数据融合,减少传输的数据量,从而节省能量。
可扩展性:簇结构可以适应网络规模的变化。
提高网络生命周期:通过轮换簇头的方式,可以均衡网络中的能量消耗。

4.2节点分簇算法实现步骤
整个网络有一个汇聚节点(Sink节点),能量足够大,相当于基站,其功率足以发送信息至全网节点,Sink节点和簇头信息交换,整个网络共有n个节点。

(1) 在初始状态下,网内各节点向Sink节点发送能量状态信息。

(2) 汇聚节点收到各节点的能量状态信息后,计算平均能量、最大能量,据此标识各节点为强节点或弱节点。若节点i的能量E(i)≥Eav,则标识为强节点,其标识S(i)=1;若E(i)<Eav,则标识为若节点,其标识S(i)=0。

ccc4c717a5894c44ccdb69c8bb647ef2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

(4) 具有最大权值的未加入簇的强节点声明为簇头,利用欧氏距离分簇,重复这一过程,直到所有的节点都被分配入簇。仅当已无强节点剩余时,弱节点方能担当簇头的备选对象。

(5) 若只有单一簇头而没有簇成员,则该簇头认为是异常孤立节点,直接删除。

(6) 经过一轮的时间段,重复(2)~(6)过程以开始下一轮的分簇。

目录
打赏
0
8
10
2
213
分享
相关文章
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
基于遗传算法的256QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
本内容展示了基于GA(遗传算法)优化的256QAM概率星座整形(PCS)技术的研究与实现。通过Matlab仿真,分析了优化前后星座图和误码率(BER)的变化。256QAM采用非均匀概率分布(Maxwell-Boltzman分布)降低外圈星座点出现频率,减小平均功率并增加最小欧氏距离,从而提升传输性能。GA算法以BER为适应度函数,搜索最优整形参数v,显著降低误码率。核心程序实现了GA优化过程,包括种群初始化、选择、交叉、变异等步骤,并绘制了优化曲线。此研究有助于提高频谱效率和传输灵活性,适用于不同信道环境。
48 10
基于遗传优化ELM网络的时间序列预测算法matlab仿真
本项目实现了一种基于遗传算法优化的极限学习机(GA-ELM)网络时间序列预测方法。通过对比传统ELM与GA-ELM,验证了参数优化对非线性时间序列预测精度的提升效果。核心程序利用MATLAB 2022A完成,采用遗传算法全局搜索最优权重与偏置,结合ELM快速训练特性,显著提高模型稳定性与准确性。实验结果展示了GA-ELM在复杂数据中的优越表现,误差明显降低。此方法适用于金融、气象等领域的时间序列预测任务。
|
28天前
|
基于遗传优化算法的带时间窗多车辆路线规划matlab仿真
本程序基于遗传优化算法,实现带时间窗的多车辆路线规划,并通过MATLAB2022A仿真展示结果。输入节点坐标与时间窗信息后,算法输出最优路径规划方案。示例结果包含4条路线,覆盖所有节点并满足时间窗约束。核心代码包括初始化、适应度计算、交叉变异及局部搜索等环节,确保解的质量与可行性。遗传算法通过模拟自然进化过程,逐步优化种群个体,有效解决复杂约束条件下的路径规划问题。
|
11月前
|
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
435 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
263 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
426 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问