Python数据分析3

简介: Matplotlib是由约翰·亨特在2008年发明的一款广泛应用于数据可视化的Python工具包,起初用于可视化癞痢病人的健康指标。它是一个功能强大的绘图库,主要擅长二维绘图,也支持简单的三维绘图。Matplotlib提供类似且更丰富的Matlab命令集,能够快速实现数据可视化,并支持高质量图像输出及多种格式。它适用于交互和非交互式绘图,兼容Linux、Windows、macOS和Solaris系统,并且便于嵌入GUI应用及Web框架如CGI、Flask、Django中,同时支持LaTeX公式插入,降低了从Matlab迁移的学习成本。

2.2.3Matplotlib
无论数据挖掘还是数学建模,都免不了会遇到数据可视化的问题。Matployhlib是约翰 亨特在2008年左右的博士后研究发明出来的,最初只是为了可视化癞痢病人的一些健康指标,而后逐渐变成了Python上使用较为广泛的可视化工具包。
同时Matplotlib还是Python中著名的绘图库,主要用于二维绘图也可以进行简单的三维绘图。Matplotlib还提供了一整套与Matlab相似但更为丰富的命令,可以非常快捷地使用Python可视化数据,而且允许输出达到出版质量的多种图像格式,还十分适合交互制图,同时也可方便地作为绘图控件,嵌入GUI应用程序或CGI、Flask、Django中。
此外,Matplotlib绘图库还有很多特点,例如不仅支持交互式绘图,还支持非交互式绘图;支持曲线(折线)图、条形图、柱状图、饼图,绘制的图形可进行配置;支持Linux、Windows、macOS与Solaris的跨平台绘图。由于Matplotlib的绘图函数基本上与Matlab的绘图函数作用差不多,所以迁移学习成本比较低。同时,Matplotlib还支持LaTex的公式插入。

目录
相关文章
|
18天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
28天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
【10月更文挑战第42天】本文是一篇技术性文章,旨在为初学者提供一份关于如何使用Python进行数据分析的入门指南。我们将从安装必要的工具开始,然后逐步介绍如何导入数据、处理数据、进行数据可视化以及建立预测模型。本文的目标是帮助读者理解数据分析的基本步骤和方法,并通过实际的代码示例来加深理解。
45 3
|
1月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
72 0
|
25天前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
|
23天前
|
存储 数据可视化 数据挖掘
Python数据分析项目:抖音短视频达人粉丝增长趋势
Python数据分析项目:抖音短视频达人粉丝增长趋势
|
27天前
|
数据采集 存储 数据可视化
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
|
28天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
29天前
|
数据采集 数据可视化 数据挖掘
深入浅出:使用Python进行数据分析的基础教程
【10月更文挑战第41天】本文旨在为初学者提供一个关于如何使用Python语言进行数据分析的入门指南。我们将通过实际案例,了解数据处理的基本步骤,包括数据的导入、清洗、处理、分析和可视化。文章将用浅显易懂的语言,带领读者一步步掌握数据分析师的基本功,并在文末附上完整的代码示例供参考和实践。
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
41 2
|
1月前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
43 2