CUDA编程一天入门

简介: 本文介绍了CUDA编程的基础知识,包括环境准备、编程模型、内核设置、示例代码simpleTexture3D,以及相关参考链接。

0 环境准备

1 套路

CUDA 编程模型是一个异构模型,其中同时使用 CPU 和 GPU。在 CUDA 中,主机是指 CPU 及其内存,而设备是指 GPU 及其内存。在主机上运行的代码可以管理主机和设备上的内存,还可以启动内核,内核是在设备上执行的功能。这些内核由许多 GPU 线程并行执行。

鉴于 CUDA 编程模型的异构性质,CUDA C 程序的典型操作顺序是:

  1. 声明并分配主机和设备内存。
  2. 初始化主机数据。
  3. 将数据从主机传输到设备。
  4. 执行一个或多个内核。
  5. 将结果从设备传输到主机。

2 并行执行内核设置

三重 V 形之间的信息是执行配置,它指示并行执行内核的设备线程数。在 CUDA 中,软件中有一个线程层次结构,它模仿线程处理器在 GPU 上的分组方式。在 CUDA 编程模型中,我们谈到启动带有线程块**网格的内核。执行配置中的第一个参数指定网格中的线程块数,第二个参数指定线程块中的线程数。

int blockSize = 256;
int numBlocks = (N + blockSize - 1) / blockSize;
add<<<numBlocks, blockSize>>>(N, x, y);

3 示例代码simpleTexture3D

/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *  * Neither the name of NVIDIA CORPORATION nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
  3D texture sample

  This sample loads a 3D volume from disk and displays slices through it
  using 3D texture lookups.
*/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <helper_gl.h>

#if defined(__APPLE__) || defined(MACOSX)
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
#include <GLUT/glut.h>
#ifndef glutCloseFunc
#define glutCloseFunc glutWMCloseFunc
#endif
#else
#include <GL/freeglut.h>
#endif

// includes, cuda
#include <vector_types.h>
#include <cuda_runtime.h>
#include <cuda_gl_interop.h>

// CUDA utilities and system includes
#include <helper_cuda.h>
#include <helper_functions.h>
#include <vector_types.h>

typedef unsigned int uint;
typedef unsigned char uchar;

#define MAX_EPSILON_ERROR 5.0f
#define THRESHOLD 0.15f

const char *sSDKsample = "simpleTexture3D";

const char *volumeFilename = "Bucky.raw";
const cudaExtent volumeSize = make_cudaExtent(32, 32, 32);

const uint width = 512, height = 512;
const dim3 blockSize(16, 16, 1);
const dim3 gridSize(width / blockSize.x, height / blockSize.y);

float w = 0.5;  // texture coordinate in z

GLuint pbo;  // OpenGL pixel buffer object
struct cudaGraphicsResource
    *cuda_pbo_resource;  // CUDA Graphics Resource (to transfer PBO)

bool linearFiltering = true;
bool animate = true;

StopWatchInterface *timer = NULL;

uint *d_output = NULL;

// Auto-Verification Code
const int frameCheckNumber = 4;
int fpsCount = 0;  // FPS count for averaging
int fpsLimit = 1;  // FPS limit for sampling
int g_Index = 0;
unsigned int frameCount = 0;
unsigned int g_TotalErrors = 0;
volatile int g_GraphicsMapFlag = 0;

int *pArgc = NULL;
char **pArgv = NULL;

#ifndef MAX
#define MAX(a, b) ((a > b) ? a : b)
#endif

extern "C" void cleanup();
extern "C" void setTextureFilterMode(bool bLinearFilter);
extern "C" void initCuda(const uchar *h_volume, cudaExtent volumeSize);
extern "C" void render_kernel(dim3 gridSize, dim3 blockSize, uint *d_output,
                              uint imageW, uint imageH, float w);
extern void cleanupCuda();

void loadVolumeData(char *exec_path);

void computeFPS() {
   
  frameCount++;
  fpsCount++;

  if (fpsCount == fpsLimit) {
   
    char fps[256];
    float ifps = 1.f / (sdkGetAverageTimerValue(&timer) / 1000.f);
    sprintf(fps, "%s: %3.1f fps", sSDKsample, ifps);

    glutSetWindowTitle(fps);
    fpsCount = 0;

    fpsLimit = ftoi(MAX(1.0f, ifps));
    sdkResetTimer(&timer);
  }
}

// render image using CUDA
void render() {
   
  // map PBO to get CUDA device pointer
  g_GraphicsMapFlag++;
  checkCudaErrors(cudaGraphicsMapResources(1, &cuda_pbo_resource, 0));
  size_t num_bytes;
  checkCudaErrors(cudaGraphicsResourceGetMappedPointer(
      (void **)&d_output, &num_bytes, cuda_pbo_resource));
  // printf("CUDA mapped PBO: May access %ld bytes\n", num_bytes);

  // call CUDA kernel, writing results to PBO
  render_kernel(gridSize, blockSize, d_output, width, height, w);

  getLastCudaError("render_kernel failed");

  if (g_GraphicsMapFlag) {
   
    checkCudaErrors(cudaGraphicsUnmapResources(1, &cuda_pbo_resource, 0));
    g_GraphicsMapFlag--;
  }
}

// display results using OpenGL (called by GLUT)
void display() {
   
  sdkStartTimer(&timer);

  render();

  // display results
  glClear(GL_COLOR_BUFFER_BIT);

  // draw image from PBO
  glDisable(GL_DEPTH_TEST);
  glRasterPos2i(0, 0);
  glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo);
  glDrawPixels(width, height, GL_RGBA, GL_UNSIGNED_BYTE, 0);
  glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0);

  glutSwapBuffers();
  glutReportErrors();

  sdkStopTimer(&timer);
  computeFPS();
}

void idle() {
   
  if (animate) {
   
    w += 0.01f;
    glutPostRedisplay();
  }
}

void keyboard(unsigned char key, int x, int y) {
   
  switch (key) {
   
    case 27:
#if defined(__APPLE__) || defined(MACOSX)
      exit(EXIT_SUCCESS);
      glutDestroyWindow(glutGetWindow());
      return;
#else
      glutDestroyWindow(glutGetWindow());
      return;
#endif

    case '=':
    case '+':
      w += 0.01f;
      break;

    case '-':
      w -= 0.01f;
      break;

    case 'f':
      linearFiltering = !linearFiltering;
      setTextureFilterMode(linearFiltering);
      break;

    case ' ':
      animate = !animate;
      break;

    default:
      break;
  }

  glutPostRedisplay();
}

void reshape(int x, int y) {
   
  glViewport(0, 0, x, y);

  glMatrixMode(GL_MODELVIEW);
  glLoadIdentity();

  glMatrixMode(GL_PROJECTION);
  glLoadIdentity();
  glOrtho(0.0, 1.0, 0.0, 1.0, 0.0, 1.0);
}

void cleanup() {
   
  sdkDeleteTimer(&timer);

  // add extra check to unmap the resource before unregistering it
  if (g_GraphicsMapFlag) {
   
    checkCudaErrors(cudaGraphicsUnmapResources(1, &cuda_pbo_resource, 0));
    g_GraphicsMapFlag--;
  }

  // unregister this buffer object from CUDA C
  checkCudaErrors(cudaGraphicsUnregisterResource(cuda_pbo_resource));
  glDeleteBuffers(1, &pbo);
  cleanupCuda();
}

void initGLBuffers() {
   
  // create pixel buffer object
  glGenBuffers(1, &pbo);
  glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo);
  glBufferData(GL_PIXEL_UNPACK_BUFFER_ARB, width * height * sizeof(GLubyte) * 4,
               0, GL_STREAM_DRAW_ARB);
  glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0);

  // register this buffer object with CUDA
  checkCudaErrors(cudaGraphicsGLRegisterBuffer(
      &cuda_pbo_resource, pbo, cudaGraphicsMapFlagsWriteDiscard));
}

// Load raw data from disk
uchar *loadRawFile(const char *filename, size_t size) {
   
  FILE *fp = fopen(filename, "rb");

  if (!fp) {
   
    fprintf(stderr, "Error opening file '%s'\n", filename);
    return 0;
  }

  uchar *data = (uchar *)malloc(size);
  size_t read = fread(data, 1, size, fp);
  fclose(fp);

  printf("Read '%s', %zu bytes\n", filename, read);

  return data;
}

void initGL(int *argc, char **argv) {
   
  // initialize GLUT callback functions
  glutInit(argc, argv);
  glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);
  glutInitWindowSize(width, height);
  glutCreateWindow("CUDA 3D texture");
  glutDisplayFunc(display);
  glutKeyboardFunc(keyboard);
  glutReshapeFunc(reshape);
  glutIdleFunc(idle);

  if (!isGLVersionSupported(2, 0) ||
      !areGLExtensionsSupported("GL_ARB_pixel_buffer_object")) {
   
    fprintf(stderr, "Required OpenGL extensions are missing.");
    exit(EXIT_FAILURE);
  }
}

void runAutoTest(const char *ref_file, char *exec_path) {
   
  checkCudaErrors(
      cudaMalloc((void **)&d_output, width * height * sizeof(GLubyte) * 4));

  // render the volumeData
  render_kernel(gridSize, blockSize, d_output, width, height, w);

  checkCudaErrors(cudaDeviceSynchronize());
  getLastCudaError("render_kernel failed");

  void *h_output = malloc(width * height * sizeof(GLubyte) * 4);
  checkCudaErrors(cudaMemcpy(h_output, d_output,
                             width * height * sizeof(GLubyte) * 4,
                             cudaMemcpyDeviceToHost));
  sdkDumpBin(h_output, width * height * sizeof(GLubyte) * 4,
             "simpleTexture3D.bin");

  bool bTestResult = sdkCompareBin2BinFloat(
      "simpleTexture3D.bin", sdkFindFilePath(ref_file, exec_path),
      width * height, MAX_EPSILON_ERROR, THRESHOLD, exec_path);

  checkCudaErrors(cudaFree(d_output));
  free(h_output);

  sdkStopTimer(&timer);
  sdkDeleteTimer(&timer);

  exit(bTestResult ? EXIT_SUCCESS : EXIT_FAILURE);
}

void loadVolumeData(char *exec_path) {
   
  // load volume data
  const char *path = sdkFindFilePath(volumeFilename, exec_path);

  if (path == NULL) {
   
    fprintf(stderr, "Error unable to find 3D Volume file: '%s'\n",
            volumeFilename);
    exit(EXIT_FAILURE);
  }

  size_t size = volumeSize.width * volumeSize.height * volumeSize.depth;
  uchar *h_volume = loadRawFile(path, size);

  initCuda(h_volume, volumeSize);
  sdkCreateTimer(&timer);

  free(h_volume);
}


// Program main

int main(int argc, char **argv) {
   
  pArgc = &argc;
  pArgv = argv;

  char *ref_file = NULL;

#if defined(__linux__)
  setenv("DISPLAY", ":0", 0);
#endif

  printf("%s Starting...\n\n", sSDKsample);

  if (checkCmdLineFlag(argc, (const char **)argv, "file")) {
   
    fpsLimit = frameCheckNumber;
    getCmdLineArgumentString(argc, (const char **)argv, "file", &ref_file);
  }

  // use command-line specified CUDA device, otherwise use device with highest
  // Gflops/s
  findCudaDevice(argc, (const char **)argv);

  if (ref_file) {
   
    loadVolumeData(argv[0]);
    runAutoTest(ref_file, argv[0]);
  } else {
   
    initGL(&argc, argv);

    // OpenGL buffers
    initGLBuffers();

    loadVolumeData(argv[0]);
  }

  printf(
      "Press space to toggle animation\n"
      "Press '+' and '-' to change displayed slice\n");

#if defined(__APPLE__) || defined(MACOSX)
  atexit(cleanup);
#else
  glutCloseFunc(cleanup);
#endif

  glutMainLoop();

  exit(EXIT_SUCCESS);
}
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *  * Neither the name of NVIDIA CORPORATION nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef _SIMPLETEXTURE3D_KERNEL_CU_
#define _SIMPLETEXTURE3D_KERNEL_CU_

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>

#include <helper_cuda.h>
#include <helper_math.h>

typedef unsigned int uint;
typedef unsigned char uchar;

cudaArray *d_volumeArray = 0;
cudaTextureObject_t tex;  // 3D texture

__global__ void d_render(uint *d_output, uint imageW, uint imageH, float w,
                         cudaTextureObject_t texObj) {
   
  uint x = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;
  uint y = __umul24(blockIdx.y, blockDim.y) + threadIdx.y;

  float u = x / (float)imageW;
  float v = y / (float)imageH;
  // read from 3D texture
  float voxel = tex3D<float>(texObj, u, v, w);

  if ((x < imageW) && (y < imageH)) {
   
    // write output color
    uint i = __umul24(y, imageW) + x;
    d_output[i] = voxel * 255;
  }
}

extern "C" void setTextureFilterMode(bool bLinearFilter) {
   
  if (tex) {
   
    checkCudaErrors(cudaDestroyTextureObject(tex));
  }
  cudaResourceDesc texRes;
  memset(&texRes, 0, sizeof(cudaResourceDesc));

  texRes.resType = cudaResourceTypeArray;
  texRes.res.array.array = d_volumeArray;

  cudaTextureDesc texDescr;
  memset(&texDescr, 0, sizeof(cudaTextureDesc));

  texDescr.normalizedCoords = true;
  texDescr.filterMode =
      bLinearFilter ? cudaFilterModeLinear : cudaFilterModePoint;
  ;
  texDescr.addressMode[0] = cudaAddressModeWrap;
  texDescr.addressMode[1] = cudaAddressModeWrap;
  texDescr.addressMode[2] = cudaAddressModeWrap;
  texDescr.readMode = cudaReadModeNormalizedFloat;

  checkCudaErrors(cudaCreateTextureObject(&tex, &texRes, &texDescr, NULL));
}

extern "C" void initCuda(const uchar *h_volume, cudaExtent volumeSize) {
   
  // create 3D array
  cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<uchar>();
  checkCudaErrors(cudaMalloc3DArray(&d_volumeArray, &channelDesc, volumeSize));

  // copy data to 3D array
  cudaMemcpy3DParms copyParams = {
   0};
  copyParams.srcPtr =
      make_cudaPitchedPtr((void *)h_volume, volumeSize.width * sizeof(uchar),
                          volumeSize.width, volumeSize.height);
  copyParams.dstArray = d_volumeArray;
  copyParams.extent = volumeSize;
  copyParams.kind = cudaMemcpyHostToDevice;
  checkCudaErrors(cudaMemcpy3D(&copyParams));

  cudaResourceDesc texRes;
  memset(&texRes, 0, sizeof(cudaResourceDesc));

  texRes.resType = cudaResourceTypeArray;
  texRes.res.array.array = d_volumeArray;

  cudaTextureDesc texDescr;
  memset(&texDescr, 0, sizeof(cudaTextureDesc));

  // access with normalized texture coordinates
  texDescr.normalizedCoords = true;
  // linear interpolation
  texDescr.filterMode = cudaFilterModeLinear;
  // wrap texture coordinates
  texDescr.addressMode[0] = cudaAddressModeWrap;
  texDescr.addressMode[1] = cudaAddressModeWrap;
  texDescr.addressMode[2] = cudaAddressModeWrap;
  texDescr.readMode = cudaReadModeNormalizedFloat;

  checkCudaErrors(cudaCreateTextureObject(&tex, &texRes, &texDescr, NULL));
}

extern "C" void render_kernel(dim3 gridSize, dim3 blockSize, uint *d_output,
                              uint imageW, uint imageH, float w) {
   
  d_render<<<gridSize, blockSize>>>(d_output, imageW, imageH, w, tex);
}

void cleanupCuda() {
   
  if (tex) {
   
    checkCudaErrors(cudaDestroyTextureObject(tex));
  }
  if (d_volumeArray) {
   
    checkCudaErrors(cudaFreeArray(d_volumeArray));
  }
}

#endif  // #ifndef _SIMPLETEXTURE3D_KERNEL_CU_

4 参考链接

GitHub - NVIDIA/cuda-samples: Samples for CUDA Developers which demonstrates features in CUDA Toolkit

CUDA routines are functions that can be executed on the GPU using many threads in parallel1.
There are many CUDA code samples included as part of the CUDA Toolkit to help you get started on writing CUDA C/C++ applications2.
You can also find some easy introductions to CUDA C and C++ on the NVIDIA Technical Blog31.

GitHub - LitLeo/OpenCUDA

CUDA开发环境搭建 - 知乎 (zhihu.com)

(191条消息) VS+CUDA 新建项目里没有CUDA选项(附详细图文步骤)_cuda vs_Xav Zewen的博客-CSDN博客

相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
相关文章
|
机器学习/深度学习 并行计算 API
【GPU】CUDA是什么?以及学习路线图!
【GPU】CUDA是什么?以及学习路线图!
4168 0
|
4月前
|
存储 缓存 人工智能
Mooncake 最新进展:SGLang 和 LMCache 基于 Mooncake 实现高效 PD 分离框架
Mooncake 的架构设计兼具高性能和灵活性,为未来的扩展性和生态建设奠定了坚实基础。
|
10月前
|
人工智能 并行计算 流计算
【AI系统】GPU 架构与 CUDA 关系
本文介绍了英伟达GPU硬件基础概念,重点解析了A100 GPU架构中的GPC、TPC、SM等组件及其功能。接着深入讲解了CUDA并行计算平台和编程模型,特别是CUDA线程层次结构。最后,文章探讨了如何根据CUDA核心数量、核心频率等因素计算GPU的算力峰值,这对于评估大模型训练的算力需求至关重要。
744 3
|
10月前
|
机器学习/深度学习 人工智能 并行计算
【AI系统】Tensor Core 基本原理
本文深入介绍了英伟达GPU中的Tensor Core,一种专为加速深度学习设计的硬件单元。文章从发展历程、卷积计算、混合精度训练及基本原理等方面,详细解析了Tensor Core的工作机制及其在深度学习中的应用,旨在帮助读者全面理解Tensor Core技术。通过具体代码示例,展示了如何在CUDA编程中利用Tensor Core实现高效的矩阵运算,从而加速模型训练和推理过程。
1333 0
|
机器学习/深度学习 并行计算 计算机视觉
CUDA:王者之巅——探究CUDA为何能成为并行计算的佼佼者
本文探讨了CUDA在并行计算领域的崛起及其成为佼佼者的原因,详细介绍了CUDA的技术背景、架构原理及在深度学习、图像处理等领域的应用案例,展示了其显著的性能优势与优化方法,并展望了CUDA在未来计算技术发展中的潜力与方向。
|
12月前
|
计算机视觉
vs2019_qt6.2.4_dcmtk3.6.7_vtk9.2.2_itk5.3_opencv4.6.0编译记录
这篇文章记录了使用VS2019编译Qt6.2.4、DCMTK3.6.7、VTK9.2.2、ITK5.3和OpenCV4.6.0的过程,包括下载和编译步骤,并提供了遇到编译错误时的解决方案和参考链接。
295 0
vs2019_qt6.2.4_dcmtk3.6.7_vtk9.2.2_itk5.3_opencv4.6.0编译记录
|
12月前
|
数据库 数据库管理
qt对sqlite数据库多线程的操作
本文总结了在Qt中进行SQLite数据库多线程操作时应注意的四个关键问题,包括数据库驱动加载、加锁、数据库的打开与关闭,以及QsqlQuery变量的使用。
738 1
|
机器学习/深度学习 并行计算 PyTorch
PyTorch与CUDA:加速深度学习模型训练的最佳实践
【8月更文第27天】随着深度学习应用的广泛普及,高效利用GPU硬件成为提升模型训练速度的关键。PyTorch 是一个强大的深度学习框架,它支持动态计算图,易于使用且高度灵活。CUDA (Compute Unified Device Architecture) 则是 NVIDIA 开发的一种并行计算平台和编程模型,允许开发者直接访问 GPU 的并行计算能力。本文将详细介绍如何利用 PyTorch 与 CUDA 的集成来加速深度学习模型的训练过程,并提供具体的代码示例。
1206 1
|
12月前
自己动手写QT多线程demo
本文是作者关于如何编写Qt多线程demo的教程,介绍了如何实现多线程功能,包括可暂停和继续的功能。文章提供了部分示例代码,展示了如何创建线程类、启动和管理线程,以及线程间的通信。同时,还提供了相关参考资料和免费下载链接。
270 0
|
存储 缓存 编译器
探秘C++中的神奇组合:std--pair的魅力之旅
探秘C++中的神奇组合:std--pair的魅力之旅
791 1
探秘C++中的神奇组合:std--pair的魅力之旅

热门文章

最新文章