在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型

简介: 在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。

在深度学习模型的训练过程中,学习率作为一个关键的超参数,对模型的收敛速度和最终性能有着重大影响。传统方法通常采用统一的学习率,但随着研究的深入,我们发现为网络的不同层设置不同的学习率可能会带来显著的性能提升。本文将详细探讨这一策略的实施方法及其在PyTorch框架中的具体应用。

层级学习率的理论基础

深度神经网络的不同层次在特征提取和信息处理上扮演着不同的角色。基于这一认知,我们可以合理推断对不同层采用差异化的学习策略可能会更有效:

  1. 底层特征提取:网络的前几层通常负责捕获通用的低级特征,如边缘、纹理等。这些特征往往具有较强的通用性和可迁移性。
  2. 高层语义理解:网络的后几层则倾向于提取更为抽象和任务相关的高级特征。
  3. 任务特定层:如全连接分类层,直接与特定任务相关。

基于上述观察我们可以制定相应的学习率策略:

  • 对于预训练的底层,使用较小的学习率以保持其已学到的通用特征。
  • 对于中间层,可以采用适中的学习率。
  • 对于任务特定的顶层,则可以使用较大的学习率以快速适应新任务。

PyTorch实现:以ResNet为例

下面我们将以ResNet18为例,演示如何在PyTorch中实现层级学习率设置。

1、模型定义

首先,我们加载预训练的ResNet18模型,并修改其最后一层以适应新的分类任务:

 importtorch
 importtorch.nnasnn
 importtorchvision.modelsasmodels

 # 加载预训练的ResNet18模型
 model=models.resnet18(pretrained=True)

 # 修改最后的全连接层以适应新的分类任务
 num_classes=10  # 假设新任务有10个类别
 model.fc=nn.Linear(model.fc.in_features, num_classes)

2、参数分组

接下来,我们将模型参数分组,为不同的层设置不同的学习率:

 # 定义不同组的学习率
 backbone_lr=1e-4  # 较小的学习率用于预训练的主干网络
 classifier_lr=1e-3  # 较大的学习率用于新的分类器层

 # 创建参数组
 params= [
     {'params': model.conv1.parameters(), 'lr': backbone_lr},
     {'params': model.bn1.parameters(), 'lr': backbone_lr},
     {'params': model.layer1.parameters(), 'lr': backbone_lr},
     {'params': model.layer2.parameters(), 'lr': backbone_lr},
     {'params': model.layer3.parameters(), 'lr': backbone_lr},
     {'params': model.layer4.parameters(), 'lr': backbone_lr},
     {'params': model.fc.parameters(), 'lr': classifier_lr}
 ]

此处我们对ResNet的各个组件进行了更细致的划分,为不同的层组设置了相应的学习率。这种方法允许我们对模型的学习过程进行更精细的控制。

优化器配置与训练过程

3、优化器设置

在确定了参数分组后,我们需要选择合适的优化器并进行配置。这里我们简单的选用Adam优化器。

 optimizer=torch.optim.Adam(params)

这种分组策略同样适用于其他PyTorch支持的优化器,PyTorch的优化器会自动识别并应用在参数分组中定义的不同学习率。这种设计使得实现层级学习率变得相对简单。

4、训练循环

实现了层级学习率后的训练循环保持不变。PyTorch会在后台自动处理不同参数组的学习率:

 # 定义损失函数
 criterion=nn.CrossEntropyLoss()

 # 训练循环
 forepochinrange(num_epochs):
     model.train()
     forinputs, labelsintrain_loader:
         optimizer.zero_grad()
         outputs=model(inputs)
         loss=criterion(outputs, labels)
         loss.backward()
         optimizer.step()

     # 在每个epoch结束后进行验证
     model.eval()
     # ... [验证代码]

5、学习率调度

除了设置初始的层级学习率,我们还可以结合学习率调度器来动态调整学习率。PyTorch提供了多种学习率调度器,如

StepLR

ReduceLROnPlateau

等。以下是一个使用

StepLR

的示例:

 fromtorch.optim.lr_schedulerimportStepLR

 scheduler=StepLR(optimizer, step_size=30, gamma=0.1)

 # 在训练循环中更新学习率
 forepochinrange(num_epochs):
     # ... [训练代码]
     scheduler.step()

这将每30个epoch将所有参数组的学习率降低为原来的0.1倍。

高级学习率优化技巧

1、渐进式解冻

在微调预训练模型时,一种有效的策略是渐进式解冻。我们可以先锁定底层,只训练顶层,然后逐步解冻更多的层:

 # 初始阶段:只训练分类器
 forparaminmodel.parameters():
     param.requires_grad=False
 model.fc.requires_grad=True

 # 训练几个epoch后
 model.layer4.requires_grad=True

 # 再过几个epoch
 model.layer3.requires_grad=True

以此类推,冻结其实意味着学习率为0,也就是不对任何参数进行更新。

2、层适应学习率

我们上面已经介绍了手动指定固定的学习率,其实我们还可以通过自定义优化器来实现,不同的层的不同的学习率范围。我们可以实现一个自定义的优化器来自动调整每一层的学习率:

 classLayerAdaptiveLR(torch.optim.Adam):
     def__init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0):
         super().__init__(params, lr, betas, eps, weight_decay)
         self.param_groups=sorted(self.param_groups, key=lambdax: id(x['params'][0]))

     defstep(self, closure=None):
         loss=None
         ifclosureisnotNone:
             loss=closure()

         forgroupinself.param_groups:
             forpingroup['params']:
                 ifp.gradisNone:
                     continue
                 grad=p.grad.data
                 state=self.state[p]

                 # 根据梯度统计调整学习率
                 iflen(state) ==0:
                     state['step'] =0
                     state['exp_avg'] =torch.zeros_like(p.data)
                     state['exp_avg_sq'] =torch.zeros_like(p.data)

                 exp_avg, exp_avg_sq=state['exp_avg'], state['exp_avg_sq']
                 beta1, beta2=group['betas']

                 state['step'] +=1

                 exp_avg.mul_(beta1).add_(grad, alpha=1-beta1)
                 exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1-beta2)

                 denom=exp_avg_sq.sqrt().add_(group['eps'])

                 # 动态调整学习率
                 step_size=group['lr'] * (exp_avg.abs() /denom).mean().item()
                 p.data.add_(exp_avg, alpha=-step_size)

         returnloss

 # 使用示例
 optimizer=LayerAdaptiveLR(model.parameters(), lr=1e-3)

可以看到,上面我们继承自Adam优化器,这里我们不用实现优化过程只针对于针对层的学习率变化即可。

总结

层级学习率设置是一种强大的优化技术,特别适用于迁移学习和微调预训练模型的场景。通过精心设计的学习率策略,可以在保留预训练模型通用特征的同时有效地适应新任务。结合其他高级技巧,如渐进式解冻、层适应学习率,可以进一步提升模型的训练效率和性能。

在实际应用中,最佳的学习率配置往往需要通过实验来确定。建议研究者根据具体任务和模型架构进行适当的调整和实验,以获得最佳的训练效果。

https://avoid.overfit.cn/post/c13411d085974b02bad98504f3ae3fc1

相关实践学习
【AI破次元壁合照】少年白马醉春风,函数计算一键部署AI绘画平台
本次实验基于阿里云函数计算产品能力开发AI绘画平台,可让您实现“破次元壁”与角色合照,为角色换背景效果,用AI绘图技术绘出属于自己的少年江湖。
从 0 入门函数计算
在函数计算的架构中,开发者只需要编写业务代码,并监控业务运行情况就可以了。这将开发者从繁重的运维工作中解放出来,将精力投入到更有意义的开发任务上。
目录
相关文章
|
3月前
|
机器学习/深度学习 人工智能 PyTorch
PyTorch深度学习 ? 带你从入门到精通!!!
🌟 蒋星熠Jaxonic,深度学习探索者。三年深耕PyTorch,从基础到部署,分享模型构建、GPU加速、TorchScript优化及PyTorch 2.0新特性,助力AI开发者高效进阶。
PyTorch深度学习 ? 带你从入门到精通!!!
|
4月前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
351 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
3月前
|
边缘计算 人工智能 PyTorch
130_知识蒸馏技术:温度参数与损失函数设计 - 教师-学生模型的优化策略与PyTorch实现
随着大型语言模型(LLM)的规模不断增长,部署这些模型面临着巨大的计算和资源挑战。以DeepSeek-R1为例,其671B参数的规模即使经过INT4量化后,仍需要至少6张高端GPU才能运行,这对于大多数中小型企业和研究机构来说成本过高。知识蒸馏作为一种有效的模型压缩技术,通过将大型教师模型的知识迁移到小型学生模型中,在显著降低模型复杂度的同时保留核心性能,成为解决这一问题的关键技术之一。
|
3月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
5月前
|
PyTorch 算法框架/工具 异构计算
PyTorch 2.0性能优化实战:4种常见代码错误严重拖慢模型
我们将深入探讨图中断(graph breaks)和多图问题对性能的负面影响,并分析PyTorch模型开发中应当避免的常见错误模式。
373 9
|
7月前
|
机器学习/深度学习 存储 PyTorch
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
本文通过使用 Kaggle 数据集训练情感分析模型的实例,详细演示了如何将 PyTorch 与 MLFlow 进行深度集成,实现完整的实验跟踪、模型记录和结果可复现性管理。文章将系统性地介绍训练代码的核心组件,展示指标和工件的记录方法,并提供 MLFlow UI 的详细界面截图。
342 2
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
475 22
|
9月前
|
机器学习/深度学习 编解码 人工智能
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
1236 64
计算机视觉五大技术——深度学习在图像处理中的应用
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
1144 6

推荐镜像

更多