Python:Pandas实现批量删除Excel中的sheet

简介: Python:Pandas实现批量删除Excel中的sheet

前些天,有个人问我如何批量删除Excel中的sheet,具体问题描述是:有一大堆Excel文件,里面有一些Excel中有多余的sheet(如:张三、李四等),需要将这些多余的sheet删除并保存,如何解决这个问题?其实利用Python中的pandas库能完美解决此类问题。

以一个Excel为例子:

这个Excel中有6个sheet,我要删除后两个sheets即:DetailVol_127_1_1和DetaiTemp_127_1_1,下面的代码就可以帮大家实现。


import pandas as pd#找到Excel文件路径并读取path='./'new_path='./new/'i='xxx.xls'xl=pd.ExcelFile(path+i)#读取所有的sheets并存入names列表中names=xl.sheet_names#新建一个Excel文件writer=pd.ExcelWriter(new_path+i)for name in names[:-2]:  #逐个sheet读取并将其存入新的excel文件中  df=pd.read_excel(path+i,sheet_name=name)  df.to_excel(writer,sheet_name=name)  writer.save()

运行完后,新的Excel文件就放到new文件夹里了,自己可以尝试一下,有人问删除一个sheet不是分分钟的事情吗?是的,但一旦有一大堆Excel需要你操作怎么办?Python的好处就在于自动化操作,写个循环,几秒钟搞定半天的工作量而且还不怕出错,这就是为啥人们常说“Python好!”😄😄

相关文章
|
1月前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
|
2月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
81 0
|
30天前
|
数据可视化 数据处理 Python
使用Pandas实现Excel中的数据透视表功能
本文介绍了如何使用Python的Pandas库实现Excel中的数据透视表功能,包括环境准备、创建模拟销售数据、代码实现及输出等步骤。通过具体示例展示了按地区和销售员汇总销售额的不同方法,如求和、平均值、最大值等,帮助读者掌握Pandas在数据处理上的强大能力。
60 12
|
2月前
|
Java 测试技术 持续交付
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
本文重点讲解如何搭建App自动化测试框架的思路,而非完整源码。主要内容包括实现目的、框架设计、环境依赖和框架的主要组成部分。适用于初学者,旨在帮助其快速掌握App自动化测试的基本技能。文中详细介绍了从需求分析到技术栈选择,再到具体模块的封装与实现,包括登录、截图、日志、测试报告和邮件服务等。同时提供了运行效果的展示,便于理解和实践。
121 4
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
|
2月前
|
数据采集 数据可视化 数据处理
Python数据科学:Pandas库入门与实践
Python数据科学:Pandas库入门与实践
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
28天前
|
机器学习/深度学习 前端开发 数据处理
利用Python将Excel快速转换成HTML
本文介绍如何使用Python将Excel文件快速转换成HTML格式,以便在网页上展示或进行进一步的数据处理。通过pandas库,你可以轻松读取Excel文件并将其转换为HTML表格,最后保存为HTML文件。文中提供了详细的代码示例和注意事项,帮助你顺利完成这一任务。
39 0
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
50 2
|
2月前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
53 2
|
2月前
|
数据采集 数据可视化 数据挖掘
Python数据分析:Pandas库实战指南
Python数据分析:Pandas库实战指南