使用PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建文旅领域知识问答机器人

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 本次教程介绍了如何使用 PAI ×LLaMA Factory 框架,基于全参方法微调 Qwen2-VL 模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。

人工智能平台 PAI 搭建「文旅领域知识问答机器人」活动上线了!

活动地址https://developer.aliyun.com/topic/llamafactory2

活动时间:10月18日-11月30日


🎁 领取PAI产品免费试用

  • PAI-DSW 提供 A10 / V100等机型支持免费试用,可先领取免费试用权益后参与活动;
  • 或可以购买交互式建模 PAI-DSW 资源包参与活动,购买链接:PAI-DSW 100CU*H资源包,价格 59 元起;如不购买资源包,PAI-DSW 会按量进行计费,计费标准详见价格计算器-阿里云

image.png

教程简述

阿里云人工智能平台 PAI 是 AI Native 的大模型与 AIGC 工程平台,覆盖 AI 开发全链路,为用户提供高性能、高稳定的大模型工程化能力。

LLaMA Factory 是一款开源低代码大模型微调框架,集成了百余种开源大模型的高效微调,至今已在 Github 社区获得超过 3 万个 star,成为了社区最受欢迎的微调框架之一。

LLaMA Factory 与阿里云人工智能平台 PAI 一起,开启AI开发新范式,为大家带来云上大模型训练推理最佳实践!通过PAI+LLaMA Factory 微调 Qwen2-VL 模型,快速搭建文旅领域知识问答机器人,期待看到您与AI导游的创意对话!

image.png

实验教程

1. 准备环境和资源

1.1. 领取交互式建模PAI-DSW免费试用权益,并准备PAI工作空间

新用户可领取交互式建模PAI-DSW产品免费试用资源包

  • 对于交互式建模 PAI-DSW 的新用户,阿里云提供 A10 / V100等机型支持免费试用,可先领取免费试用权益后参与活动;(试用规则请参照阿里云免费试用:https://free.aliyun.com/);或可以购买交互式建模 PAI-DSW 资源包参与活动,购买链接:PAI-DSW 100CU*H资源包,价格 59 元起;如不购买资源包,PAI-DSW 会按量进行计费,计费标准详见阿里云产品定价。


开通机器学习PAI并创建默认工作空间

前往PAI控制台,其中关键参数配置如下:

  • 本教程地域选择:华北2(北京)。您也可以根据情况选择华东1(杭州)、华东2(上海)、华南1(深圳)地域。
  • 组合开通:本教程无需使用其他产品,去除勾选MaxCompute和DataWorks产品。
  • 服务角色授权:单击去授权,完成服务角色授权。

说明:更多详细内容,请参见开通并创建默认工作空间

image.png

1.2. 进入PAI NotebookGallery

登录PAI控制台

在左侧导航栏中,选择快速开始>NotebookGallery。

image.png

在Notebook Gallery页面,单击进入“LLaMA Factory多模态微调实践:微调Qwen2-VL构建文旅大模型”教程。

image.png

image.png

在详情页面,您可查看到预置的LLaMA Factory多模态微调实践:微调Qwen2-VL构建文旅大模型教程,单击右上角的在DSW中打开。

image.png

在请选择对应实例对话框中,单击新建DSW实例。

image.png

1.3. 创建PAI-DSW实例

在配置实例页面,自定义输入实例名称,例如DSW_LlamaFactory。

image.png

说明:

  • 若您是 PAI 产品新用户,请再次确认是否已领取免费使用权益,点击领取。若您未领取免费试用权益,或不符合免费试用条件,或历史已领取且免费试用额度用尽或到期,完成本实验将产生扣费,大约为10-30元/小时。
  • 请在实验完成后,参考最后一章节清理及后续,停止/删除实例,以免产生不必要的扣费或资源消耗。

GPU推荐使用 24GB 显存的 A10(ecs.gn7i-c8g1.2xlarge)或更高配置,

※ 支持免费试用的资源:ecs.gn7i-c8g1.2xlarge、ecs.gn6v-c8g1.2xlarge、ecs.g6.xlarge

E7132B19-1083-4f0b-B53D-37FFBC218314.png

在配置实例页面的选择镜像区域,请确认镜像是否为官方镜像的modelscope:1.14.0-pytorch2.1.2-gpu-py310-cu121-ubuntu22.04。

在配置实例页面,未提及的参数保持默认即可,单击确认,创建实例。

请您耐心等待大约3分钟左右,当状态变为运行中时,表示实例创建成功,点击打开NoteBook

image.png


1.4. 运行Notebook教程文件

安装LLaMA Factory

根据教程指引,依次运行命令。

说明:单击命令左侧的运行按钮表示开始运行任务,当左侧为号时表明成功运行结束。

image.png

image.png

下载数据集

LLaMA-Factory 项目内置了丰富的数据集,放在了 data目录下。您可以跳过本步骤,直接使用内置数据集。您也可以准备自定义数据集,将数据处理为框架特定的格式,放在 data 下,并且修改 dataset_info.json 文件。

本教程准备了一份多轮对话数据集,运行下述命令下载数据。

说明:单击命令左侧的运行按钮表示开始运行任务,当左侧为号时表明成功运行结束。

image.png

2. 模型微调

2.1. 启动 Web UI

单击命令左侧的运行按钮表示开始运行任务,当左侧为号时表明成功运行结束。

然后单击返回的URL地址,进入Web UI页面。

image.png

2.2. 配置参数

进入 WebUI 后,可以切换语言到中文(zh)。首先配置模型,本教程选择 Qwen2VL-2B-Chat 模型,微调方法修改为 full,针对小模型使用全参微调方法能带来更好的效果。

image.png

数据集使用上述下载的 train.json

image.png

可以点击「预览数据集」。点击关闭返回训练界面。

image.png

设置学习率为 1e-4,训练轮数为 10,更改计算类型为 pure_bf16,梯度累积为 2,有利于模型拟合。

image.png

在其他参数设置区域修改保存间隔为 1000,节省硬盘空间。

image.png

2.3. 启动微调

将输出目录修改为 train_qwen2vl,训练后的模型权重将会保存在此目录中。点击「预览命令」可展示所有已配置的参数,您如果想通过代码运行微调,可以复制这段命令,在命令行运行。

点击「开始」启动模型微调。

image.png

启动微调后需要等待一段时间,待模型下载完毕后可在界面观察到训练进度和损失曲线。模型微调大约需要 14 分钟,显示“训练完毕”代表微调成功。

image.png

3. 模型对话

选择「Chat」栏,将检查点路径改为 train_qwen2vl,点击「加载模型」即可在 Web UI 中和微调后的模型进行对话。

image.png

首先点击下载测试图片1测试图片2,并上传至对话框的图像区域,接着在系统提示词区域填写“你是一个导游,请生动有趣地回答游客提出的问题”。在页面底部的对话框输入想要和模型对话的内容,点击提交即可发送消息。

image.png

发送后模型会逐字生成回答,从回答中可以发现模型学习到了数据集中的内容,能够恰当地模仿导游的语气介绍图中的山西博物院。 image.png

点击「卸载模型」,点击检查点路径输入框取消勾选检查点路径,再次点击「加载模型」,即可与微调前的原始模型聊天。 image.png

重新向模型发送相同的内容,发现原始模型无法准确识别山西博物院。
image.png

总结

本次教程介绍了如何使用 PAI 和 LLaMA Factory 框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。在后续实践中,可以使用实际业务数据集,对模型进行微调,得到能够解决实际业务场景问题的本地领域多模态大模型。

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
5天前
|
传感器 人工智能 自然语言处理
RDT:清华开源全球最大的双臂机器人操作任务扩散基础模型、代码与训练集,基于模仿能力机器人能够自主完成复杂任务
RDT(Robotics Diffusion Transformer)是由清华大学AI研究院TSAIL团队推出的全球最大的双臂机器人操作任务扩散基础模型。RDT具备十亿参数量,能够在无需人类操控的情况下自主完成复杂任务,如调酒和遛狗。
48 22
RDT:清华开源全球最大的双臂机器人操作任务扩散基础模型、代码与训练集,基于模仿能力机器人能够自主完成复杂任务
|
3天前
|
人工智能 算法 机器人
EMMA-X:新加坡科技设计大学推出具身多模态动作模型,使夹爪机器人具备空间推理和任务规划能力
EMMA-X是由新加坡科技设计大学推出的具身多模态动作模型,具备70亿参数,通过在链式思维推理数据上微调OpenVLA创建。该模型结合层次化的具身数据集,增强空间推理和任务规划能力。
20 3
EMMA-X:新加坡科技设计大学推出具身多模态动作模型,使夹爪机器人具备空间推理和任务规划能力
|
4天前
|
机器学习/深度学习 人工智能 机器人
NeurIPS 2024:机器人操纵世界模型来了,成功率超过谷歌RT-1 26.6%
PIVOT-R是一种新型世界模型,专注于预测与任务相关的路点,以提高语言引导的机器人操作的性能和效率。该模型由路点感知世界模型(WAWM)和轻量级动作预测模块组成,辅以异步分层执行器(AHE),在SeaWave基准测试中表现优异,平均相对改进达19.45%,执行效率提高28倍。
43 26
|
10天前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
18天前
|
XML 算法 自动驾驶
使用URDF和Xacro构建差速轮式机器人模型
前言 本篇文章介绍的是ROS高效进阶内容,使用URDF 语言(xml格式)做一个差速轮式机器人模型,并使用URDF的增强版xacro,对机器人模型文件进行二次优化。 差速轮式机器人:两轮差速底盘由两个动力轮位于底盘左右两侧,两轮独立控制速度,通过给定不同速度实现底盘转向控制。一般会配有一到两个辅助支撑的万向轮。 此次建模,不引入算法,只是把机器人模型的样子做出来,所以只使用 rivz 进行可视化显示。 机器人的定义和构成 机器人定义:机器人是一种自动化的机器,所不同的是这种机器具备一些与人或生物相似的智能能力,如感知能力、规划能力、动作能力和协同能力,是一种具有高级灵活性的自动化机器
55 15
|
1月前
|
XML 算法 自动驾驶
ROS进阶:使用URDF和Xacro构建差速轮式机器人模型
【11月更文挑战第7天】本篇文章介绍的是ROS高效进阶内容,使用URDF 语言(xml格式)做一个差速轮式机器人模型,并使用URDF的增强版xacro,对机器人模型文件进行二次优化。
|
24天前
|
人工智能 自然语言处理 算法
具身智能高校实训解决方案 ----从AI大模型+机器人到通用具身智能
在具身智能的发展历程中,AI 大模型的出现成为了关键的推动力量。高校作为培养未来科技人才的摇篮,需要紧跟这一前沿趋势,开展具身智能实训课程。通过将 AI 大模型与具备 3D 视觉的机器人相结合,为学生搭建一个实践平台。
182 64
|
5天前
|
人工智能 自然语言处理 机器人
机器人迈向ChatGPT时刻!清华团队首次发现具身智能Scaling Laws
清华大学研究团队在机器人操作领域发现了数据规模定律,通过大规模数据训练,机器人策略的泛化性能显著提升。研究揭示了环境和对象多样性的重要性,提出了高效的數據收集策略,使机器人在新环境中成功率达到约90%。这一发现有望推动机器人技术的发展,实现更广泛的应用。
48 26
|
1月前
|
算法 机器人 语音技术
由通义千问驱动的人形机器人具身智能Multi-Agent系统
申昊科技人形机器人小昊,集成通义千问多模态大模型的具身智能系统,旨在讲解销售、迎宾表演等场景。机器人通过语音、动作等方式与用户互动,利用云端大语言模型处理自然语言,结合视觉、听觉等多模态感知技术,实现流畅的人机对话、目标追踪、展厅讲解等功能。
200 3
由通义千问驱动的人形机器人具身智能Multi-Agent系统
|
27天前
|
自然语言处理 算法 机器人
智能电话销售机器人源码搭建部署系统电话机器人源码
智能电话销售机器人源码搭建部署系统电话机器人源码
27 4

相关产品

  • 人工智能平台 PAI
  • 下一篇
    DataWorks