死磕ElasticSearch(一)

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 死磕ElasticSearch(一)

1.1:什么是全文检索

将非结构化数据中的一部分信息提取出来,重新组织,使其变得有一定结构,然后对此有一定结构的数据进行搜索,从而达到搜索相对较快的目的。这部分从非结构化数据中提取出的然后重新组织的信息,我们称之为索引。

例如:字典,字典的拼音表和部首检字表就相当于字典的索引,对每一个字的解释是非结构化的,如果字典没有音节表和部首检字表,在茫茫辞海中找到一个字只能顺序扫描。

然而字的某些信息可以提取出来进行结构化处理,比如读音,就比较结构化,分声母和韵母,分别只有集中可以一一列举,于是将读音拿出来按照一定顺序排列,每一项读音都指向此字的详细解释的页数。

我们搜索时按照结构化的拼音搜索到读音,然后按其指向的页数,便可找到我们的非结构化数据--也即对字的解释。

这种先建立索引,再对索引进行搜索的过程就叫做全文检索。

虽然创建索引的过程是非常耗时的,但是索引一旦创建就可以多次使用,全文检索的主要处理的是查询,所以耗时间创建索引也是值得的。

ae15f4606031083f74ac8c0d7175ab35.png

比如:使用全文检索,搜索“生化危机”

2ce6cf8f782d25e53df394e2c5c3f1ca.png

有4条数据将每条数据进行词条拆分。

如“生化危机电影”拆成:生化,危机,电影关键词(拆分结果与策略算法有关)每个关键词将对应包含此关键词的数据ID搜索的时候,直接匹配这些关键词,就能拿到包含关键词的数据这个过程就叫做全文检索。而词条拆分和词条对应的ID这个就是倒排索引的基本原理。

1.2:对比数据库的缺陷

mysql如果没有索引的情况下,共有100万条,按照之前的思路,其实就要扫描100万次,而且每次扫描,都需要匹配那个文本所有的字符,确认是否包含搜索的关键词,而且还不能将搜索词拆解开来进行检索。

e2d2519933a81ad902d6fcc47b0738d2.png

1.3:利用倒排索引

进行搜索的话,假设100万条数据,拆分出来的词语,假设有1000万个词语,那么在倒排索引中,就有1000万行,我们可能并不需要搜索1000万次,很可能说,在搜索到第一次的时候,我们就可以找到这个搜索词对应的数据,也可能是第100次,或者第1000次。

1.4:全文检索使用场景

①、维基百科,类似百度百科,牙膏,牙膏的维基百科,全文检索,高亮,搜索推荐。

②、The Guardian(国外的新闻网站),类似搜狐新闻,用户行为日志(点击,浏览,收藏,评论)+社交网络数据(对某某新闻的相关看法),数据分析,给到每篇新闻文章的作者,让他知道他的文章的公众反馈(好,坏,热门,垃圾,鄙视,崇拜)。

③、Stack Overflow:国外的程序异常谈论论坛。

④、GitHub:开源代码管理,搜索上千亿行代码

⑤、电商网站:检索商品。

⑥、日志数据分析:ES进行复杂的数据分析

⑦、商品价格监控网站:用户设定某商品的价格阈值,当低于阈值的时候,发送通知消息给用户。

⑧、BI系统,商业智能,比如说有个大型商场集团,BI,分析一下某某区域最近3年的用户消费金额的趋势以及用户群体的组成构成,产出相关的数张报表。ES执行数据分析和挖掘,Kibana进行数据可视化。

  1. 5:ES简介

es是一个开源的高扩展的分布式全文检索引擎,它可以近乎实时的存储,检索数据;本身扩展性很好,可以扩展到上百台服务器,处理PB级别的数据。

es也使用java开发并使用Lucene作为其核心来实现所有索引和搜索的功能,但是它的目的是通过简单的RESTful API来隐藏Lucene的复杂性,从而让全文搜索变得简单。

es是面向文档的,这意味着它可以存储整个对象或者文档,然而它不仅仅是存储,还会索引index每个文档的内容使之可以被搜索。

在es中,可以对文档(而非成行成列的数据)进行索引,搜索,排序,过滤。

es对比传统关系型数据库如下:

1d442a2d3528b10f953eea4e0422a3fd.png

es提供多种语言的支持,其中java的客户端为Java REST Client。

而它又分为两种:高级和低级的。高级包含更多的功能,如果把高级比作MyBatis的话,那么低级就相当于JDBC,是基于Netty和Server通讯相关。

高级的Client类似MyBatis是对Low Level的封装

c8676a3771621325a813a3fc2d2933b7.png

1.6:ES基本概念

①、索引库

ES将它的数据存储在一个或者多个索引index中。用SQL领域的术语来类比,索引就像是数据库,可以向索引写入文档或者从索引中读取文档。并通过es内部使用Lucene将数据写入索引或者从索引中检索数据。

es使用倒排索引来做快速的全文搜索,这点与数据库不同,一般数据库的索引,使用B+Tree来实现。索引库就是存储索引的保存在磁盘上的一系列的文件。里面存储了建立好的索引信息以及文档对象,一个索引库相当于数据库中的一张表。

4e168331a7556b450028c698688eb1ac.png

②、document对象

获取原始内容的目的是为了索引,在索引前需要将原始内容创建成文档document,文档中包含了一个一个的域field,域中存储内容。每个文档都有唯一的编号,就是文档id。document对象相当于表中的一行记录。文档是es中的主要实体。对所有使用es的案例来说,它们最终都可以归纳为对文档的搜索。文档由字段构成

1cf958d6d4ec8ad2f2d475a739c75fa7.png

③、field对象

如果把document看做成是数据库中一条记录的话,field相当于是记录中的字段,field是索引库中存储数据的最小单位,field的数据类型大致可以分为数值类型和文本类型,一般需要查询的字段都是文本类型的。field还有如下属性:

A:是否分词:是否对域中的内容进行分词处理,前提是我们要对域的内容进行查询。

B:是否索引:将Field分析后的词或整个Field值进行索引, 只有索引方可以搜索到,比如:商品名称,商品简介分析后进行索引,订单号,身份证号并不用分词但是也要索引,这些将来都要作为查询条件。

C:是否存储,将Field值存储在文档中,存储在文档中的Field才可以从Document中获取,比如:商品名称,订单号,凡是将来要从Document中获取的Field都要存储。

④、term对象

从文档对象中拆分出来的每个单词叫做一个term,不同的域中拆分出来的相同的单词是不同的term。term中包含两部分一部分是文档的域名,另一部分是单词的内容。term是创建索引的关键词对象。

⑤、类型(type)

每个文档都有与之对应的类型type定义。这允许用户在一个索引中存储多种文档类型,并为不同文档提供类型提供不同的映射。

type的版本迭代:

A:5.X及以前的版本一个index有一个或者多个type。

B:6.X版本一个index只有一个type。

C:7.X版本移除了type,type相关的所有内容全部变成了Deprecated,为了兼容升级和过渡,所有的7.X版本es数据写入后type字段都默认被设置为_doc。

D:8.X版本完全废弃type。

⑥、映射(mapping)

mapping是处理数据的方式和规则方面做一些限制,如某个字段的数据类型,默认值,分析器,是否被索引等等。这些都是映射里面可以设置的,其它就是处理es里面数据的一些使用规则设置也叫做映射,按照最优规则处理数据对性能提高很大,因此才需要建立映射,并且需要思考如何建立映射才能对性能更好。

⑦、分片(shard)

代表索引分片,es可以把一个完整的索引分成多个分片,这样的好处是可以把一个大的索引拆分成多个,分布到不同的节点上,构成分布式搜索,分片的数量只能在索引创建前指定,并且索引创建后不能更改。

5.X版本以及以后的版本不能通过配置文件定义分片,ES默认5:1 5个主分片,每个分片,1个副本分片。

官方文档的解释如下:


当索引一个文档的时候,文档会被存储到一个主分片中。 Elasticsearch 如何知道一个文档应该存放到哪个分片中呢?当我们创建文档时,它如何决定这个文档应当被存储在分片 1 还是分片 2 中呢?首先这肯定不会是随机的,否则将来要获取文档的时候我们就不知道从何处寻找了。实际上,这个过程是根据下面这个公式决定的:shard = hash(routing) % number_of_primary_shards


routing 是一个可变值,默认是文档的_id,也可以设置成一个自定义的值。 routing 通过 hash 函数生成一个数字,然后这个数字再除以 number_of_primary_shards (主分片的数量)后得到 余数 。这个分布在 0 到 number_of_primary_shards-1 之间的余数,就是我们所寻求的文档所在分片的位置。这就解释了为什么我们要在创建索引的时候就确定好主分片的数量 并且永远不会改变这个数量:因为如果数量变化了,那么所有之前路由的值都会无效,文档也再也找不到了

⑧、副本(replicas)

代表索引副本,es可以设置多个索引的副本,副本的作用:

A:提高系统的容错性,当某个节点某个分片损坏或者丢失可以从副本中恢复。

B:是提高es的查询效率,es会自动对搜索请求进行负载均衡。

⑨、集群(cluster)

代表一个集群,集群中有多个节点node,其中一个为主节点,这个主节点是可以通过选举产生的,主从节点是对于集群内部来说的,es的一个概念就是去中心化,字面上列就是无中心节点,这是对于集群外部来说的,因为从外部来看es集群,在逻辑上是个整体,你与任何一个节点的通信和与整个es集群通信是等价的。

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
4月前
死磕ElasticSearch(二)
死磕ElasticSearch(二)
|
4月前
|
存储 NoSQL 关系型数据库
死磕HBase(一)
死磕HBase(一)
|
8月前
|
人工智能
死磕Elasticsearch:携手六年,感谢有你!
死磕Elasticsearch:携手六年,感谢有你!
81 5
|
缓存 JSON 安全
深入了解 Elasticsearch:10个常见面试问题及详细答案
Elasticsearch 是一个强大的搜索和分析引擎,广泛应用于处理大型数据集和构建实时搜索应用程序。在准备 Elasticsearch 面试时,掌握一些常见问题的答案至关重要。本文将为你提供10个常见的 Elasticsearch 面试问题,并详细解答每个问题。
|
8月前
|
运维 架构师 大数据
那些 ChatGPT4 也搞不定的 Elasticsearch 问题,请抛给我们!
那些 ChatGPT4 也搞不定的 Elasticsearch 问题,请抛给我们!
51 0
|
存储 缓存 自然语言处理
Elasticsearch面试题(查漏补缺)
Elasticsearch面试题(查漏补缺)
98 0
|
存储 自然语言处理 固态存储
初次使用 Elasticsearch 遇多种分词难题?那是你没掌握这些原理
命名有包含搜索关键词的文档,但结果却没有?存进去的文档被分成哪些词(term)了?自定义分词规则,但感觉好麻烦呢,无从下手?
5622 0
初次使用 Elasticsearch 遇多种分词难题?那是你没掌握这些原理
|
存储 监控 搜索推荐
ElasticSearch这些坑记得避开
ES南墙,建议绕开;作为最常用的搜索引擎组件,在系统架构中发挥极其重要的能力,可以极大的提升数据的加载和检索效率;
159 0
ElasticSearch这些坑记得避开
|
Oracle 搜索推荐 Java
终结初学者对ElasticSearch、Kibana、Logstash安装的种种困难《玩转ElasticSearch 1》-3
终结初学者对ElasticSearch、Kibana、Logstash安装的种种困难《玩转ElasticSearch 1》
213 0
终结初学者对ElasticSearch、Kibana、Logstash安装的种种困难《玩转ElasticSearch 1》-3
|
Linux
终结初学者对ElasticSearch、Kibana、Logstash安装的种种困难《玩转ElasticSearch 1》-2
终结初学者对ElasticSearch、Kibana、Logstash安装的种种困难《玩转ElasticSearch 1》
350 0
终结初学者对ElasticSearch、Kibana、Logstash安装的种种困难《玩转ElasticSearch 1》-2