Python中requests、aiohttp、httpx性能对比

简介: 这篇文章对比了Python中三个流行的HTTP客户端库:requests、aiohttp和httpx,在发送HTTP请求时的性能,并提供了测试代码和结果,以帮助选择适合不同应用场景的库。

在Python中,有许多用于发送HTTP请求的库,其中最受欢迎的是requests、aiohttp和httpx。这三个库的性能和功能各不相同,因此在选择使用哪个库时,需要考虑到自己的需求和应用场景。

首先,让我们来了解一下这三个库的基本介绍。

  • requests 是一个简单易用的HTTP库,它可以发送HTTP请求和处理HTTP响应。它的API简单易用,可以轻松地实现HTTP请求和响应的处理。

  • aiohttp 是一个异步HTTP客户端/服务器框架,它使用asyncio库实现异步IO操作。它支持HTTP/1.1和HTTP/2协议,可以轻松地处理大量并发请求。

  • httpx 是一个全新的HTTP客户端库,它提供了更加现代化的API和更好的性能。它支持异步和同步请求,支持HTTP/1.1和HTTP/2协议,还提供了WebSocket和HTTP/1.1协议升级的支持。

接下来,我们将对这三个库进行性能测试,以便更好地了解它们的性能和优缺点。

我们使用Python 3.9.1版本进行测试,测试的机器配置为Intel Core i7-7700HQ CPU @ 2.80GHz,16GB内存,Windows 10操作系统。

requests测试

首先,我们测试了发送1000个同步请求的时间。测试代码如下:

import requests
import time
start_time = time.time()
for i in range(1000):
    response = requests.get('https://www.baidu.com')
end_time = time.time()
print('Time taken: ', end_time - start_time)

测试结果如下:

Time taken:  8.606025457382202

aiohttp测试

接下来,我们测试使用aiohttp发送1000个异步请求的时间。测试代码如下:

import aiohttp
import asyncio
import time
async def fetch(session, url):
    async with session.get(url) as response:
        return await response.read()
async def main():
    async with aiohttp.ClientSession() as session:
        tasks = []
        for i in range(1000):
            task = asyncio.ensure_future(fetch(session, 'https://www.baidu.com'))
            tasks.append(task)
        responses = await asyncio.gather(*tasks)
start_time = time.time()
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
end_time = time.time()
print('Time taken: ', end_time - start_time)

测试结果如下:

Time taken:  1.8979811668395996

httpx测试

最后,我们测试使用httpx发送1000个异步请求的时间。测试代码如下:

import httpx
import asyncio
import time
async def main():
    async with httpx.AsyncClient() as client:
        for i in range(1000):
            response = await client.get('https://www.baidu.com')
start_time = time.time()
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
end_time = time.time()
print('Time taken: ', end_time - start_time)

测试结果如下:

Time taken:  1.4310226440429688

从上述测试结果可以看出,httpx的性能最好,aiohttp的性能次之,requests的性能最差。但是,在实际应用中,我们需要根据具体的需求来选择合适的库。如果我们需要处理大量并发请求,那么aiohttp和httpx是更好的选择,因为它们支持异步IO操作,可以更好地处理大量并发请求。如果我们只需要发送一些简单的HTTP请求,那么requests是一个更简单和易用的选择。

这三个库各有优缺点,我们需要根据自己的需求和应用场景来选择合适的库。

相关文章
|
2月前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
64 3
|
2月前
|
Python
Python中的异步编程:使用asyncio和aiohttp实现高效网络请求
【10月更文挑战第34天】在Python的世界里,异步编程是提高效率的利器。本文将带你了解如何使用asyncio和aiohttp库来编写高效的网络请求代码。我们将通过一个简单的示例来展示如何利用这些工具来并发地处理多个网络请求,从而提高程序的整体性能。准备好让你的Python代码飞起来吧!
84 2
|
17天前
|
JSON 数据可视化 测试技术
python+requests接口自动化框架的实现
通过以上步骤,我们构建了一个基本的Python+Requests接口自动化测试框架。这个框架具有良好的扩展性,可以根据实际需求进行功能扩展和优化。它不仅能提高测试效率,还能保证接口的稳定性和可靠性,为软件质量提供有力保障。
49 7
|
2月前
|
存储 大数据 Python
利用Python的高级语法优化代码可以显著提高代码的可读性、简洁性和性能
利用Python的高级语法优化代码可以显著提高代码的可读性、简洁性和性能
38 1
|
3月前
|
数据采集 前端开发 算法
Python Requests 的高级使用技巧:应对复杂 HTTP 请求场景
本文介绍了如何使用 Python 的 `requests` 库应对复杂的 HTTP 请求场景,包括 Spider Trap(蜘蛛陷阱)、SESSION 访问限制和请求频率限制。通过代理、CSS 类链接数控制、多账号切换和限流算法等技术手段,提高爬虫的稳定性和效率,增强在反爬虫环境中的生存能力。文中提供了详细的代码示例,帮助读者掌握这些高级用法。
147 1
Python Requests 的高级使用技巧:应对复杂 HTTP 请求场景
|
3月前
|
网络协议 数据库连接 Python
python知识点100篇系列(17)-替换requests的python库httpx
【10月更文挑战第4天】Requests 是基于 Python 开发的 HTTP 库,使用简单,功能强大。然而,随着 Python 3.6 的发布,出现了 Requests 的替代品 —— httpx。httpx 继承了 Requests 的所有特性,并增加了对异步请求的支持,支持 HTTP/1.1 和 HTTP/2,能够发送同步和异步请求,适用于 WSGI 和 ASGI 应用。安装使用 httpx 需要 Python 3.6 及以上版本,异步请求则需要 Python 3.8 及以上。httpx 提供了 Client 和 AsyncClient,分别用于优化同步和异步请求的性能。
python知识点100篇系列(17)-替换requests的python库httpx
|
2月前
|
数据采集 JSON 测试技术
Python爬虫神器requests库的使用
在现代编程中,网络请求是必不可少的部分。本文详细介绍 Python 的 requests 库,一个功能强大且易用的 HTTP 请求库。内容涵盖安装、基本功能(如发送 GET 和 POST 请求、设置请求头、处理响应)、高级功能(如会话管理和文件上传)以及实际应用场景。通过本文,你将全面掌握 requests 库的使用方法。🚀🌟
210 7
|
2月前
|
调度 数据库 Python
掌握Python中的异步编程,提升I/O密集型任务的性能
掌握Python中的异步编程,提升I/O密集型任务的性能
45 0
|
3月前
|
测试技术 持续交付 Apache
性能怪兽来袭!Python+JMeter+Locust,让你的应用性能飙升🦖
【10月更文挑战第10天】随着互联网应用规模的不断扩大,性能测试变得至关重要。本文将探讨如何利用Python结合Apache JMeter和Locust,构建高效且可定制的性能测试框架。通过介绍JMeter和Locust的使用方法及Python的集成技巧,帮助应用在高负载下保持稳定运行。
81 2
|
3月前
|
机器学习/深度学习 数据挖掘 Serverless
手把手教你全面评估机器学习模型性能:从选择正确评价指标到使用Python与Scikit-learn进行实战演练的详细指南
【10月更文挑战第10天】评估机器学习模型性能是开发流程的关键,涉及准确性、可解释性、运行速度等多方面考量。不同任务(如分类、回归)采用不同评价指标,如准确率、F1分数、MSE等。示例代码展示了使用Scikit-learn库评估逻辑回归模型的过程,包括数据准备、模型训练、性能评估及交叉验证。
153 1