文献解读-Consistency and reproducibility of large panel next-generation sequencing: Multi-laboratory assessment of somatic mutation detection on reference materials with mismatch repair and proofreading deficiency

简介: Consistency and reproducibility of large panel next-generation sequencing: Multi-laboratory assessment of somatic mutation detection on reference materials with mismatch repair and proofreading deficiency,大panel二代测序的一致性和重复性:对具有错配修复和校对缺陷的参考物质进行体细胞突变检测的多实验室评估

文献解读-Gene Editing.png

关键词:基因编辑;基因测序;变异检测;


文献简介

  • 标题(英文):Consistency and reproducibility of large panel next-generation sequencing: Multi-laboratory assessment of somatic mutation detection on reference materials with mismatch repair and proofreading deficiency
  • 标题(中文):大panel二代测序的一致性和重复性:对具有错配修复和校对缺陷的参考物质进行体细胞突变检测的多实验室评估
  • 发表期刊:Journal of Advanced Research
  • 作者单位:中国医学科学院老年医学研究所国家临床检验中心等
  • 发表年份:2023
  • 文章地址:https://doi.org/10.1016/j.jare.2022.03.016

1.png

图1 文献介绍

临床精准肿瘤学越来越依赖于使用大panel下一代测序的准确全基因组分析;然而,准确和一致地检测来自单个平台和管道的体细胞突变的困难仍然是一个悬而未决的问题。为了促进靶向测序在临床上的应用和标准化,应使用特征明确且配对的肿瘤-正常参考样品进行验证和质量控制。
在该研究中,研究者使用CRISPR-Cas9技术敲低参与错配修复和DNA校对的基因,以在确定的GM12878细胞系中积累体细胞突变。以对照品为参考材料,综合评价肿瘤panel检测结果的重现性和准确性,探讨潜在影响因素。


测序流程

在panel检测数据分析部分,研究者使用Sentieon软件进行reads比对、变异检测及变异过滤等分析并与其他分析流程进行了综合比较。

2.png

图2 Sentieon的作用

3.jpg

图3 用于评估多种靶向panel测序技术分析性能的研究设计

Sentieon软件团队拥有丰富的软件开发及算法优化工程经验,致力于解决生物数据分析中的速度与准确度瓶颈,为来自于分子诊断、药物研发、临床医疗、人群队列、动植物等多个领域的合作伙伴提供高效精准的软件解决方案,共同推动基因技术的发展。 截至2023年3月份,Sentieon已经在全球范围内为1300+用户提供服务,被世界一级影响因子刊物如NEJM、Cell、Nature等广泛引用,引用次数超过700篇。此外,Sentieon连续数年摘得了Precision FDA、Dream Challenges等多个权威评比的桂冠,在业内获得广泛认可。


文献讨论

4.png

图4 文献讨论

本研究全面评估了使用大型panel NGS进行体细胞突变检测的性能,包括以下几个方面:

  1. 使用DNA修复基因和校对基因敲低细胞系制备参考样本
  2. 纳入医院或商业实验室的多个panels
  3. 基于全外显子组测序(WES)和panels结果生成真实集(truth set)
  4. 评估panels的重复性、假阳性(FPs)和假阴性(FNs)

总结

综上所述,该研究总共制备了来自工程细胞系的14对肿瘤-正常参考DNA样品,并生成了包含168.1 Mb高置信区8个体细胞突变的参考数据集。为制定参考标准提供了综合实践,以评估Oncopanel检测体细胞突变,并定量揭示了检测误差的来源。研究结果将促进实验室之间的优化、验证和质量控制。

目录
相关文章
|
2月前
|
算法 数据挖掘 数据处理
文献解读-Sentieon DNAscope LongRead – A highly Accurate, Fast, and Efficient Pipeline for Germline Variant Calling from PacBio HiFi reads
PacBio® HiFi 测序是第一种提供经济、高精度长读数测序的技术,其平均读数长度超过 10kb,平均碱基准确率达到 99.8% 。在该研究中,研究者介绍了一种准确、高效的 DNAscope LongRead 管道,用于从 PacBio® HiFi 读数中调用胚系变异。DNAscope LongRead 是对 Sentieon 的 DNAscope 工具的修改和扩展,该工具曾获美国食品药品管理局(FDA)精密变异调用奖。
30 2
文献解读-Sentieon DNAscope LongRead – A highly Accurate, Fast, and Efficient Pipeline for Germline Variant Calling from PacBio HiFi reads
|
数据挖掘
【提示学习】Automatic Multi-Label Prompting: Simple and Interpretable Few-Shot Classification
文章提出了一种简单确高效地构建verbalization的方法:
|
存储 机器学习/深度学习 人工智能
PTPCG: Efficient Document-level Event Extraction via Pseudo-Trigger-aware Pruned Complete Graph论文解读
据我们所知,我们目前的方法是第一项研究在DEE中使用某些论元作为伪触发词的效果的工作,我们设计了一个指标来帮助自动选择一组伪触发词。此外,这种度量也可用于度量DEE中带标注触发词的质量。
136 1
|
机器学习/深度学习 移动开发 自然语言处理
DEPPN:Document-level Event Extraction via Parallel Prediction Networks 论文解读
当在整个文档中描述事件时,文档级事件抽取(DEE)是必不可少的。我们认为,句子级抽取器不适合DEE任务,其中事件论元总是分散在句子中
144 0
DEPPN:Document-level Event Extraction via Parallel Prediction Networks 论文解读
|
数据挖掘
MUSIED: A Benchmark for Event Detection from Multi-Source Heterogeneous Informal Texts 论文解读
事件检测(ED)从非结构化文本中识别和分类事件触发词,作为信息抽取的基本任务。尽管在过去几年中取得了显著进展
73 0
|
机器学习/深度学习 自然语言处理 算法
TPLinker: Single-stage Joint Extraction of Entities and Relations Through Token Pair Linking 论文解读
近年来,从非结构化文本中提取实体和关系引起了越来越多的关注,但由于识别共享实体的重叠关系存在内在困难,因此仍然具有挑战性。先前的研究表明,联合学习可以显著提高性能。然而,它们通常涉及连续的相互关联的步骤,并存在暴露偏差的问题。
225 0
|
机器学习/深度学习 数据挖掘
ACL2023 - An AMR-based Link Prediction Approach for Document-level Event Argument Extraction
最近的工作引入了用于文档级事件论元提取(文档级EAE)的抽象语义表示(AMR),因为AMR提供了对复杂语义结构的有用解释,并有助于捕获长距离依赖关系
202 0
|
机器学习/深度学习 自然语言处理 数据挖掘
UnifiedEAE: A Multi-Format Transfer Learning Model for Event Argument Extraction via Variational论文解读
事件论元抽取(Event argument extraction, EAE)旨在从文本中抽取具有特定角色的论元,在自然语言处理中已被广泛研究。
97 0
|
机器学习/深度学习 自然语言处理 索引
GTEE-DYNPREF: Dynamic Prefix-Tuning for Generative Template-based Event Extraction 论文解读
我们以基于模板的条件生成的生成方式考虑事件抽取。尽管将事件抽取任务转换为带有提示的序列生成问题的趋势正在上升,但这些基于生成的方法存在两个重大挑战
151 0
|
机器学习/深度学习 存储 数据采集
DCFEE: A Document-level Chinese Financial Event Extraction System based on Automatically Labeled论文解读
我们提出了一个事件抽取框架,目的是从文档级财经新闻中抽取事件和事件提及。到目前为止,基于监督学习范式的方法在公共数据集中获得了最高的性能(如ACE 2005、KBP 2015)。这些方法严重依赖于人工标注的训练数据。
146 0