期盼已久!通义灵码 AI 程序员开启邀测,全流程开发仅用几分钟

本文涉及的产品
函数计算FC,每月15万CU 3个月
应用实时监控服务-可观测链路OpenTelemetry版,每月50GB免费额度
注册配置 MSE Nacos/ZooKeeper,182元/月
简介: 在云栖大会上,阿里云云原生应用平台负责人丁宇宣布,「通义灵码」完成全面升级,并正式发布 AI 程序员。

在 AI 程序员的帮助下,一个几乎没有专业编程经验的初中生,在人头攒动的展台上从零开始,两分钟就做出了一个倒计时网页。


他需要做的,只是输入包含几句话的提示词。数秒钟后,大模型就生成了代码,还列出了环境需求,复制完代码就可以使用了。



这不是程序员父亲带自家小孩做的网红项目,而是人人都可以尝试的事。在大模型的帮助下,代码正在成为低门槛的设计工具。


在云栖大会上,阿里云云原生应用平台负责人丁宇宣布,「通义灵码」完成全面升级,并正式发布 AI 程序员。


相比于以往 IDE 上的「AI 编程助手」,「AI 程序员」不需要你去启动 IDE 软件,直接在 Web 端就可以完成需求分析、开发、测试等一系列工作,全面接手了复杂的开发任务。


AI 程序员,数十倍提效


还不到一岁的通义灵码,在通义大模型的加持下,现在能够自主执行任务拆解、代码编写、缺陷修复、测试等开发全过程任务,而且生成的速度最快可达分钟级,开发效率一下提升了数十倍。


「AI 程序员」是能独立自主完成研发任务的 AI 智能体,可承接人类指派的软件研发生命周期中的各类任务。它目前预置了三个使用场景:缺陷修复、需求 0-1 实现、研发问答


这是三个针对不同任务配置了不同系统提示词(system prompt)的通义大模型,因此,你也可以在自由形式的「研发问答」中通过合理构建提示词来配置最适合自己的场景。


在云栖大会现场,阿里云演示了通义灵码 AI 程序员自主进行缺陷分析、制定修复计划等功能。开发者全程只需一键确认,即可快速完成缺陷修复代码和代码提交的全过程;针对从 0 到 1 的开发任务,用户也只需输入自然语言描述需求,即可自动完成理解需求、拆解开发任务、编码、测试和修复等全链路开发过程。

目前,AI 程序员支持集成两个平台:阿里云一站式 DevOps 平台云效以及大家熟悉的代码托管平台 GitHub。我们可以让 AI 程序员直接克隆代码库或读取 issue,也能将 AI 程序员生成或修改过的代码直接提交到我们的项目代码库。

image.png


背靠通义大模型,能力全面升级


大模型爆发以来,能「自动写代码」的 AI 辅助编程便不断成为人们的话题。最近一段时间里,AI 程序员正逐渐走向实用化。其中,通义灵码是最吸引关注的工具之一。


目前,阿里云内部全面推行 AI 编程,使用通义灵码辅助程序员写代码、读代码、查 BUG、优化代码等。通义灵码还被专门分配了一个工号——AI001,顺利「入职」了阿里云

image.png

过去一年中,通义灵码凭借强大的辅助编程能力收获了不少用户:其 IDE 插件下载量超 500 万,并已入职中华财险、哈啰集团、长安汽车等公司,累计生成代码超 10 亿行,每日辅助开发者生成代码超 3000 万次,是国内最受欢迎的辅助编程工具。


具体能力上,通义灵码 AI 编码助手立足通义大模型,采用了阿里云首创的代码仓库知识图结构,支持 64K 上下文,具备跨文件感知、检索增强式生成(RAG)和自适应生成能力,研发问答准确率超过 90%。通义灵码为已有用户贡献的代码比例已经接近 30%。


与此同时,随着通义大模型在语义理解、代码生成、开发工作流等方面全面进化,通义灵码的能力也在全面提升。较之通义灵码 AI 编码助手,最新升级的 AI 程序员同时具备了架构师、开发工程师、测试工程师等多种岗位技能。


AI 程序员的出现,正在颠覆科技公司的工作方式。它不仅能显著缩短工程师们的日常开发时间,提高效率,优化工程资源的分配,使人们能够专注于更具战略性的创新任务。


对于那些鲜少接触编程的普通人来说,AI 程序员也将很快使复杂的开发流程变得触手可及。无需深入的编程知识或繁琐的环境配置,只需依靠 AI 的力量,人们便能轻松完成从规划、开发到部署和优化的全流程操作,一站式构建新应用,实现以前无法想象的创新。


点击此处,申请测试。

相关实践学习
流水线运行出错排查难?AI帮您智能排查
本实验将带您体验云效流水线Flow的智能排查能力,只需短短1-2分钟,即可体验AI智能排查建议。
ALPD云架构师系列 - 云原生DevOps36计
如何把握和运用云原生技术,撬动新技术红利,实现持续、安全、高效和高质量的应用交付,并提升业务的连续性和稳定性,这是云原生时代持续交付共同面对的机会和挑战。本课程由阿里云开发者学堂和阿里云云效共同出品,是ALPD方法学云架构师系列的核心课程之一,适合架构师、企业工程效能负责人、对DevOps感兴趣的研发、测试、运维。 课程目标 前沿技术:了解云原生下DevOps的正确姿势,享受云原生带来的技术红利 系统知识:全局视角看软件研发生命周期,系统学习DevOps实践技能 课程大纲: 云原生开发和交付:云研发时代软件交付的挑战与云原生工程实践 云原生开发、运行基础设施:无差别的开发、运行环境 自动部署:构建可靠高效的应用发布体系 持续交付:建立团队协同交付的流程和流水线 质量守护:构建和维护测试和质量守护体系 安全保障:打造可信交付的安全保障体系 建立持续反馈和持续改进闭环
相关文章
|
1天前
|
机器学习/深度学习 数据采集 自然语言处理
可视化大模型流程:图解Token处理与词生成过程​
本文深入解析大模型生成内容的核心技术流程:从输入分词、词嵌入,到Decoder层语义建模、LM Head输出预测,再到概率采样与自回归生成。带你理解LLM如何通过Token化、注意力机制与深度学习实现智能问答。建议点赞收藏,干货满满!
41 3
|
4天前
|
机器学习/深度学习 人工智能 机器人
AI Compass前沿速览:Nano Bananary、MCP Registry、通义DeepResearch 、VoxCPM、InternVLA·M1具身机器人
AI Compass前沿速览:Nano Bananary、MCP Registry、通义DeepResearch 、VoxCPM、InternVLA·M1具身机器人
|
1月前
|
人工智能 自然语言处理 前端开发
AI 调酒师上岗!Qwen3-Coder × 通义灵码完成 AI 调酒师项目实战开发
本课程通过“AI调酒师”项目实战,讲解如何使用通义灵码与Qwen3-Coder模型结合阿里云百炼平台,从需求分析、前端界面搭建、后端服务调用到整体部署的全流程开发。内容涵盖Bento UI设计、Tailwind CSS布局、语音识别与大模型内容生成,并结合MCP服务实现设计稿驱动开发,帮助开发者快速构建趣味AI应用,提升产品落地能力。
301 33
|
1月前
|
人工智能 JavaScript 前端开发
​​大模型开发从入门到部署
本内容系统讲解大语言模型技术,涵盖BERT、GPT等主流架构,深入Transformer原理与自注意力机制,结合PyTorch实战,详解张量操作、自动求导与模型训练,并介绍RAG、Agent等典型应用场景,助你掌握AI核心技术。
124 0
|
2月前
|
人工智能 BI 语音技术
AR眼镜+AI大模型:颠覆工业设备验收流程的智能革命
本方案结合AR眼镜与AI视觉大模型,打造高效、精准、可追溯的设备验收流程。通过第一视角记录、智能识别、结构化数据生成与智能报表功能,提升验收效率与质量,助力企业实现智能化管理。
|
2月前
|
人工智能 缓存 数据可视化
手把手玩转本地大模型:Ollama+DeepSeek+Dify 零门槛全流程指南
本文提供从零搭建本地AI工作站的完整指南,详解本地化部署大模型的核心优势(数据隐私/离线可用/成本可控),涵盖Ollama安装、DeepSeek-Coder模型部署、Dify可视化操作及API调用实战,助你打造安全高效的私有AI开发环境。
|
2月前
|
人工智能 自然语言处理 数据可视化
AI 助手带你玩转数据分析!通义灵码保姆级教学 | 共学课2期上线
7月15日20:00,通义灵码联合WaytoAGI社区推出《AI助手带你玩转数据分析》公开课。零门槛、零代码,只需中文指令,即可完成数据读取、分析到报告生成全流程。告别代码恐惧,业务人员也能轻松掌握数据分析,提升职场竞争力。
109 0
|
2月前
|
机器学习/深度学习 人工智能 编解码
AI-Compass LLM合集-多模态模块:30+前沿大模型技术生态,涵盖GPT-4V、Gemini Vision等国际领先与通义千问VL等国产优秀模型
AI-Compass LLM合集-多模态模块:30+前沿大模型技术生态,涵盖GPT-4V、Gemini Vision等国际领先与通义千问VL等国产优秀模型
AI-Compass LLM合集-多模态模块:30+前沿大模型技术生态,涵盖GPT-4V、Gemini Vision等国际领先与通义千问VL等国产优秀模型
|
2月前
|
人工智能 架构师 程序员
用户说 | 手把手体验通义灵码 2.0:AI 程序员如何让我从“调参侠”进阶“架构师”?
通义灵码 2.0 是强大的 AI 编程工具,助力开发者从“调参侠”进阶为“架构师”。它支持跨语言开发、智能单元测试生成和图生代码等功能,显著提升开发效率。新增 QwQ 模型具备“代码脑补”能力,可推荐性能优化策略。尽管功能强大,但仍需注意环境隔离与代码审查,避免过度依赖。通义灵码 2.0 不仅是工具,更是开发者的“外接大脑”,帮助应对全栈开发挑战。
239 0
|
2月前
|
人工智能 持续交付 开发工具
AI大模型运维开发探索第五篇:GitOps 智能体
本文探讨了如何结合 Manus 的智能体设计理念与 GitOps 持续集成技术,构建低成本、高扩展性的智能体系统。通过借鉴 Manus 的沙箱机制与操作系统交互思路,利用 Git 作为智能体的记忆存储与任务调度核心,实现了推理过程可视化、自进化能力强的智能体架构。文章还分享了具体落地实践与优化经验,展示了其与 Manus 相当的功能表现,并提供了开源代码供进一步探索。
319 20