深度学习入门:理解神经网络与反向传播算法

简介: 【9月更文挑战第20天】本文将深入浅出地介绍深度学习中的基石—神经网络,以及背后的魔法—反向传播算法。我们将通过直观的例子和简单的数学公式,带你领略这一技术的魅力。无论你是编程新手,还是有一定基础的开发者,这篇文章都将为你打开深度学习的大门,让你对神经网络的工作原理有一个清晰的认识。

深度学习是机器学习的一个分支,它试图模拟人脑进行分析学习的神经网络,以实现图像、语音识别等复杂功能。今天,我们就来聊聊深度学习的核心——神经网络,以及训练神经网络的关键算法——反向传播。

首先,我们得知道什么是神经网络。你可以把神经网络想象成一堆相互连接的小电脑,每个小电脑都从它的邻居那里接收信息,处理一下,然后再传给其他小电脑。这些小电脑,我们称之为“神经元”。

在神经网络中,这些神经元被分为不同的层。最左边的层叫做输入层,最右边的层叫做输出层,中间的那些层我们统称为隐藏层。每一层里的神经元都会和下一层的所有神经元相连,形成一张巨大的网络。

那么,神经网络是怎么进行学习的呢?这就涉及到了我们的第二个主角——反向传播算法。简单来说,反向传播算法就是一种优化策略,它会根据预测结果和实际结果的差异(也就是损失函数)来不断调整神经网络中各个神经元的参数,使得预测结果越来越接近实际结果。

具体来说,反向传播算法会先计算出损失函数关于最后一个神经元参数的梯度,然后利用链式法则,从后往前逐层计算出损失函数关于前面各层神经元参数的梯度。有了这些梯度,我们就可以用各种优化算法(如梯度下降法)来更新神经元的参数,使得损失函数的值越来越小。

下面,我们来看一个简单的代码示例,演示如何使用Python的深度学习库Keras来创建一个简单的神经网络,并用反向传播算法进行训练。

from keras.models import Sequential
from keras.layers import Dense
import numpy as np

# 生成随机数据
x_train = np.random.random((1000, 20))
y_train = np.random.random((1000, 1))

# 创建模型
model = Sequential()
model.add(Dense(64, activation='relu', input_dim=20))
model.add(Dense(1, activation='sigmoid'))

# 编译模型
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy'])

# 训练模型
model.fit(x_train, y_train, epochs=10, batch_size=32)

这段代码首先生成了一些随机的训练数据,然后创建了一个简单的神经网络模型。这个模型包含一个输入层(有20个神经元),一个隐藏层(有64个神经元),和一个输出层(有1个神经元)。我们使用'relu'作为激活函数,'rmsprop'作为优化器,'binary_crossentropy'作为损失函数。最后,我们用生成的数据来训练这个模型,训练了10轮,每一轮的批次大小为32。

这就是神经网络和反向传播算法的基本概念和简单应用。当然,实际应用中的神经网络会更复杂,但基本原理都是一样的。希望这篇文章能帮助你更好地理解深度学习,开启你的AI之旅!

相关文章
|
1月前
|
存储 算法
算法入门:专题二---滑动窗口(长度最小的子数组)类型题目攻克!
给定一个正整数数组和目标值target,找出总和大于等于target的最短连续子数组长度。利用滑动窗口(双指针)优化,维护窗口内元素和,通过单调性避免重复枚举,时间复杂度O(n)。当窗口和满足条件时收缩左边界,更新最小长度,最终返回结果。
|
2月前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
334 0
|
2月前
|
机器学习/深度学习 并行计算 算法
粒子群算法优化RBF神经网络的MATLAB实现
粒子群算法优化RBF神经网络的MATLAB实现
360 123
|
1月前
|
存储 算法
算法入门:专题一:双指针(有效三角形的个数)
给定一个数组,找出能组成三角形的三元组个数。利用“两边之和大于第三边”的性质,先排序,再用双指针优化。固定最大边,左右指针从区间两端向内移动,若两短边之和大于最长边,则中间所有组合均有效,时间复杂度由暴力的O(n³)降至O(n²)。
|
1月前
|
存储 算法 编译器
算法入门:剑指offer改编题目:查找总价格为目标值的两个商品
给定递增数组和目标值target,找出两数之和等于target的两个数字。利用双指针法,left从头、right从尾向中间逼近,根据和与target的大小关系调整指针,时间复杂度O(n),空间复杂度O(1)。找不到时返回{-1,-1}。
|
1月前
|
机器学习/深度学习 算法
采用蚁群算法对BP神经网络进行优化
使用蚁群算法来优化BP神经网络的权重和偏置,克服传统BP算法容易陷入局部极小值、收敛速度慢、对初始权重敏感等问题。
262 5
|
2月前
|
存储 算法 安全
即时通讯安全篇(三):一文读懂常用加解密算法与网络通讯安全
作为开发者,也会经常遇到用户对数据安全的需求,当我们碰到了这些需求后如何解决,如何何种方式保证数据安全,哪种方式最有效,这些问题经常困惑着我们。52im社区本次着重整理了常见的通讯安全问题和加解密算法知识与即时通讯/IM开发同行们一起分享和学习。
285 9
|
1月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
117 0
|
2月前
|
算法 数据挖掘 区块链
基于遗传算法的多式联运车辆路径网络优优化研究(Matlab代码实现)
基于遗传算法的多式联运车辆路径网络优优化研究(Matlab代码实现)
113 2
|
2月前
|
机器学习/深度学习 传感器 算法
【表面粗糙度】基于粒子群PSO算法优化-BP神经网络的表面粗糙度研究(Matlab代码实现)
【表面粗糙度】基于粒子群PSO算法优化-BP神经网络的表面粗糙度研究(Matlab代码实现)
220 7

热门文章

最新文章