植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面

简介: 植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。

一、介绍

植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。

二、系统效果图片展示

img_09_20_13_59_19

img_09_20_13_59_28

img_09_20_13_59_48

三、演示视频 and 完整代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/tnlcew4ub8xxpxu6

四、卷积神经网络算法

卷积神经网络(Convolutional Neural Network, CNN)是一类专门用于处理具有网格结构数据的深度学习模型,尤其在图像处理方面表现出色。其独特的结构设计能够自动从图像中提取特征,减少人工干预的需求。CNN主要由三类层次构成:卷积层、池化层和全连接层。

  1. 卷积层:卷积神经网络的核心组件是卷积层。卷积层通过卷积核(或过滤器)对输入进行扫描,每次提取局部区域的信息,从而保留空间结构。这一过程能够减少模型参数,增强模型的泛化能力。
  2. 池化层:池化层通过下采样操作减少数据的维度,同时保留重要的特征信息,避免过拟合。常见的池化操作有最大池化和平均池化。
  3. 全连接层:在网络的最后,全连接层将提取到的特征映射到输出空间。对于分类任务,输出通常是概率分布,用于预测图像所属的类别。

CNN的显著特点在于其局部感受野权值共享机制。局部感受野意味着每个神经元仅连接到前一层的局部区域,减少了参数的数量;权值共享则表明卷积核在不同位置应用相同的权值,进一步降低了计算复杂度。

在图像识别中,CNN能够自动学习图像的边缘、形状、纹理等特征,从低层到高层逐步进行抽象,非常适合处理二维图像数据。下面是一个基于TensorFlow的卷积神经网络在图像分类中的使用示例代码:

import tensorflow as tf
from tensorflow.keras import layers, models

# 创建卷积神经网络模型
model = models.Sequential([
    # 第一层卷积层和池化层
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(64, 64, 3)),
    layers.MaxPooling2D((2, 2)),

    # 第二层卷积层和池化层
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),

    # 第三层卷积层和池化层
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),

    # 全连接层
    layers.Flatten(),
    layers.Dense(64, activation='relu'),
    layers.Dense(10, activation='softmax')  # 假设有10个类别
])

# 编译模型
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 打印模型摘要
model.summary()

这段代码定义了一个简单的CNN模型,用于处理64x64大小的彩色图像,并将其分类为10个类别。通过添加卷积层和池化层,模型逐渐提取图像的不同特征,最后通过全连接层进行分类。

目录
相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
116 55
|
6天前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
115 73
|
19天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费习惯分析的深度学习模型
使用Python实现智能食品消费习惯分析的深度学习模型
121 68
|
16天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
98 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
13天前
|
机器学习/深度学习 数据采集 搜索推荐
使用Python实现深度学习模型:智能食品消费行为预测
使用Python实现深度学习模型:智能食品消费行为预测
53 8
|
17天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
42 3
|
1月前
|
设计模式 前端开发 数据库
Python Web开发:Django框架下的全栈开发实战
【10月更文挑战第27天】本文介绍了Django框架在Python Web开发中的应用,涵盖了Django与Flask等框架的比较、项目结构、模型、视图、模板和URL配置等内容,并展示了实际代码示例,帮助读者快速掌握Django全栈开发的核心技术。
173 45
|
1月前
|
安全 数据库 开发者
Python Web开发:Django框架下的全栈开发实战
【10月更文挑战第26天】本文详细介绍了如何在Django框架下进行全栈开发,包括环境安装与配置、创建项目和应用、定义模型类、运行数据库迁移、创建视图和URL映射、编写模板以及启动开发服务器等步骤,并通过示例代码展示了具体实现过程。
59 2
|
1月前
|
安全 数据库 C++
Python Web框架比较:Django vs Flask vs Pyramid
Python Web框架比较:Django vs Flask vs Pyramid
43 1
|
2月前
|
安全 数据库 C++
Python Web框架比较:Django vs Flask vs Pyramid
Python Web框架比较:Django vs Flask vs Pyramid
41 4
下一篇
DataWorks