通义千问升级旗舰模型Qwen-Max,性能接近GPT-4o

简介: 通义旗舰模型Qwen-Max全方位升级,性能接近GPT-4o

9月19日云栖大会,阿里云CTO周靖人宣布,通义旗舰模型Qwen-Max全方位升级,性能接近GPT-4o。通义官网和通义APP的后台模型均已切换为Qwen-Max,继续免费为所有用户提供服务。用户也可通过阿里云百炼平台调用Qwen-Max的API。


image.png


相比上一代模型,Qwen-Max在训练中使用了更多的训练数据、更大的模型规模、更强的人类对齐,最终达到了更高的智能水平。在MMLU-Pro、MATH、GSM8K、MBPP、MultiPL-E、LiveCodeBench等十多个权威基准上,Qwen-Max表现接近GPT-4o,数学能力、代码能力超越GPT-4o。数学和代码所代表的推理能力是大模型智能水平的最重要体现。


image.jpeg


相比2023年4月的初代通义千问大模型,Qwen-Max理解能力提升46%、数学能力提升75%、代码能力提升102%、幻觉抵御能力提升35%、指令遵循能力提升105%,模型与人类偏好的对齐水平更是有了质的飞跃,提升了700%以上。

相关文章
|
24天前
|
机器学习/深度学习 人工智能 自然语言处理
当语言遇见智慧火花:GPT家族历代模型大起底,带你见证从平凡到卓越的AI进化奇迹!
【10月更文挑战第6天】随着自然语言处理技术的进步,GPT系列模型(Generative Pre-trained Transformers)成为该领域的明星。从GPT-1的开创性工作,到GPT-2在规模与性能上的突破,再到拥有1750亿参数的GPT-3及其无需微调即可执行多种NLP任务的能力,以及社区驱动的GPT-NeoX,这些模型不断进化。虽然它们展现出强大的语言理解和生成能力,但也存在如生成错误信息或偏见等问题。本文将对比分析各代GPT模型的特点,并通过示例代码展示其部分功能。
85 2
|
21天前
|
数据采集 API 决策智能
华为诺亚联合中科大发布工具调用模型ToolACE,效果持平GPT-4获开源第一
 【10月更文挑战第10天】华为诺亚方舟实验室与中国科学技术大学合作推出ToolACE,一种自进化合成过程的工具调用模型。ToolACE通过多智能体交互和双重验证系统生成准确、复杂、多样化的工具学习数据,显著提升大型语言模型(LLM)的功能调用能力。实验结果显示,使用ToolACE数据训练的80亿参数模型性能媲美GPT-4,在伯克利功能调用排行榜上获得开源第一。
43 4
|
2月前
|
人工智能 开发者
通义千问三款主力模型再降价,最高降幅85%
通义千问三款主力模型再降价,最高降幅85%
491 12
通义千问三款主力模型再降价,最高降幅85%
|
1月前
|
存储 数据采集 数据安全/隐私保护
商汤、清华、复旦等开源百亿级多模态数据集,可训练类GPT-4o模型
商汤科技、清华大学和复旦大学等机构联合开源了名为OmniCorpus的多模态数据集,规模达百亿级,旨在支持类似GPT-4级别的大型多模态模型训练。该数据集包含86亿张图像和1696亿个文本标记,远超现有数据集规模并保持高质量,具备广泛来源和灵活性,可轻松转换为纯文本或图像-文本对。经验证,该数据集质量优良,有望促进多模态模型研究,但同时也面临存储管理、数据偏见及隐私保护等挑战。
140 60
|
2月前
|
人工智能 自然语言处理 算法
魔搭上新啦! 智源千万级指令微调数据集Infinity-Instruct,Llama3.1仅微调即可接近GPT-4
智源研究院在今年6月推出了千万级指令微调数据集Infinity Instruct。Infinity Instruct在 Huggingface等平台发布后,快速到达了Huggingface Dataset的Trending第一
魔搭上新啦! 智源千万级指令微调数据集Infinity-Instruct,Llama3.1仅微调即可接近GPT-4
|
2月前
|
人工智能 安全 测试技术
忘掉GPT-5!OpenAI推出全新AI模型系列o1,声称性能达到博士级
忘掉GPT-5!OpenAI推出全新AI模型系列o1,声称性能达到博士级
|
28天前
|
API
2024-05-14 最新!OpenAI 新模型 GPT-4 omni 简单测试,4o速度确实非常快!而且很便宜!
2024-05-14 最新!OpenAI 新模型 GPT-4 omni 简单测试,4o速度确实非常快!而且很便宜!
35 0
|
28天前
|
开发工具 git
LLM-03 大模型 15分钟 FineTuning 微调 GPT2 模型 finetuning GPT微调实战 仅需6GB显存 单卡微调 数据 10MB数据集微调
LLM-03 大模型 15分钟 FineTuning 微调 GPT2 模型 finetuning GPT微调实战 仅需6GB显存 单卡微调 数据 10MB数据集微调
50 0
|
4月前
|
存储 SQL 数据库
Python 金融编程第二版(GPT 重译)(四)(4)
Python 金融编程第二版(GPT 重译)(四)
47 3
|
4月前
|
存储 NoSQL 索引
Python 金融编程第二版(GPT 重译)(一)(4)
Python 金融编程第二版(GPT 重译)(一)
55 2