AppFlow:为您的任意模型赋能——上下文连续会话能力

本文涉及的产品
轻量应用服务器 2vCPU 1GiB,适用于搭建电商独立站
轻量应用服务器 2vCPU 4GiB,适用于网站搭建
轻量应用服务器 4vCPU 16GiB,适用于搭建游戏自建服
简介: 通过AppFlow,无需任何开发工作,即可使大型语言模型具备上下文连续对话的能力。本文以钉钉会话机器人为例,详细介绍如何配置这一功能:首先选择触发器,如钉钉机器人收到文本消息;接着配置上下文组件,组合当前和历史会话;然后选择模型,例如通义千问,并配置相应参数;更新上下文,设置对话内容和会话ID;最后将模型回答发送至钉钉。整个过程简单快捷,适用于多种触发器和模型。

大语言模型发展至今,模型的上下文对话能力已经是一个大语言模型的基础能力之一。绝大部分模型实现上下文连续会话的原理都是将历史会话与当前会话一起输入给模型,从而使模型拥有短期的记忆实现上下文的连续会话。

但是,这个简单的功能往往也需要对你部署的模型接口进行一些开发工作才可以实现。

现在通过AppFlow,不需要任何开发,您的任意模型即可拥有上下文的连续会话能力。

下面以钉钉会话机器人为例,来看看如何配置吧~

创建连接流

选择触发器

登陆AppFlow控制台创建连接流页面,填写您的流名称。

“选择触发事件”,找到并点击选择“钉钉机器人”,触发事件选择“收到文本消息时”,点击“保存,进入下一步”

image.gif 编辑

本文以钉钉为例,但AppFlow提供的上下文功能不局限于钉钉,您的触发器可以是任意的。

配置上下文组件


image.gif

选择上下文会话组件,执行动作选择“组合当前会话与历史上下文”。此处AppFlow将会把您的当前会话与历史会话组合在一起。


在钉钉场景下,会话内容插入“请求体——会话消息——消息内容”。

会话ID可以选择“请求体——会话ID”,您也可以填写任意值,这里是为了区分不同会话。

清除历史会话关键词:当您的输入会话内容与关键词一致时,AppFlow会清除历史上下文。

选择模型

选择你想要调用的模型,可以是我们提供的各种模型也可以是你自己部署的任意模型。

这里以通义千问为例:

角色选择变量“2. —— 响应体——上下文消息(包含当前会话)——role”,并将messages[0]手动改写为messages[i],表示循环应用上下文中的每一个role

问题描述选择插入““2. —— 响应体——上下文消息(包含当前会话)——content”,并将messages[0]手动改写为messages[i],表示循环应用上下文中的每一个content”

image.gif

此处,只要您的模型输入满足如下格式,都可以类似配置达到上下文会话目的

{
  "messages":[
    "role":xxxx,
    "content":xxxx
  ]
}

image.gif

更新上下文

步骤四选择“上下文连续会话组件”,执行动作选择“更新历史上下文”

image.gif 编辑

输入的对话内容表示您本轮对话的输入,钉钉场景下选择“请求体——会话消息——消息内容”。

输出的对话内容表示您的模型输出内容,选择您的模型输出字段即可。此处通义千问的输出为“3. 响应体 —— 模型输出 —— 返回内容”。

会话ID选择第二步中同样的内容。

会话轮数表示每次对话携带的历史上下文轮数。

发送模型回答到钉钉

此处以AI卡片消息为例,您也可以选择其他消息形式。

image.gif 编辑

模版ID:填写钉钉卡片平台创建的模版ID,若您还没有模版,可以参考计算巢AppFlow实现模型对话流式输出-阿里云开发者社区 创建卡片部分进行创建

机器人Code:“1. 请求体——机器人代码”

字段key:固定填写 content。如果对您的AI卡片做了定制,可以按照您定制的变量值填写。

群聊ID:“1. 请求体——会话ID”

最后完成并保存流程。

发布并调用连接流

在连接流页面发布您的连接流,按照计算巢AppFlow实现模型对话流式输出-阿里云开发者社区的步骤,添加机器人即可调用使用。

目录
打赏
0
1
1
0
148
分享
相关文章
AppFlow:为您的任意模型赋能——RAG
随着大语言模型参数规模的增加,微调成本高昂,知识检索增强方式逐渐成为主流。通过预置知识库,在模型推理前检索相关知识作为上下文,提升领域知识准确性和专业性。AppFlow现支持百炼知识库,无需额外开发,只需简单配置即可为任意模型提供RAG能力,适用于多种触发器,如钉钉机器人等。通过选择模型、配置RAG组件,并将结果发送回钉钉,轻松实现专业知识增强的回答。
AppFlow:为您的任意模型赋能——RAG
谷歌将大模型集成在实体机器人中,能看、听、说执行57种任务
【9月更文挑战第17天】近年来,人工智能在多模态大模型领域取得显著进展。谷歌最新研发的Mobility VLA系统,将大模型与实体机器人结合,实现了视觉、语言和行动的融合,使机器人能理解并执行复杂多模态指令,如“我应该把这个放回哪里?”系统在真实环境测试中表现出色,但在计算资源、数据需求及伦理问题上仍面临挑战。相关论文发布于https://arxiv.org/abs/2407.07775。
149 9
字符串相似度算法完全指南:编辑、令牌与序列三类算法的全面解析与深入分析
在自然语言处理领域,人们经常需要比较字符串,这些字符串可能是单词、句子、段落甚至是整个文档。如何快速判断两个单词或句子是否相似,或者相似度是好还是差。这类似于我们使用手机打错一个词,但手机会建议正确的词来修正它,那么这种如何判断字符串相似度呢?本文将详细介绍这个问题。
487 1
文本,好看的设计------我独自升级,六芒星技能表,可以用来判断是否在能力值之内的事情,使用六芒星可以显示能力之内,能力之外的事情,用以判断
文本,好看的设计------我独自升级,六芒星技能表,可以用来判断是否在能力值之内的事情,使用六芒星可以显示能力之内,能力之外的事情,用以判断
文本,好看的设计------我独自升级,六芒星技能表,可以用来判断是否在能力值之内的事情,使用六芒星可以显示能力之内,能力之外的事情,用以判断
【网安专题11.8】14Cosco跨语言代码搜索代码: (a) 训练阶段 相关程度的对比学习 对源代码(查询+目标代码)和动态运行信息进行编码 (b) 在线查询嵌入与搜索:不必计算相似性
【网安专题11.8】14Cosco跨语言代码搜索代码: (a) 训练阶段 相关程度的对比学习 对源代码(查询+目标代码)和动态运行信息进行编码 (b) 在线查询嵌入与搜索:不必计算相似性
322 0
印刷文字识别产品使用合集之标注阶段设定了两个独立的字段,但在返回的信息中却合并成了一个字段如何解决
印刷文字识别(Optical Character Recognition, OCR)技术能够将图片、扫描文档或 PDF 中的印刷文字转化为可编辑和可搜索的数据。这项技术广泛应用于多个领域,以提高工作效率、促进信息数字化。以下是一些印刷文字识别产品使用的典型场景合集。
创建您的第一个记忆卡片游戏
创建您的第一个记忆卡片游戏
101 0
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等