概率分布深度解析:PMF、PDF和CDF的技术指南

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 本文将深入探讨概率分布,详细阐述概率质量函数(PMF)、概率密度函数(PDF)和累积分布函数(CDF)这些核心概念,并通过实际示例进行说明。

本文将深入探讨概率分布,详细阐述概率质量函数(PMF)、概率密度函数(PDF)和累积分布函数(CDF)这些核心概念,并通过实际示例进行说明。

在深入探讨PMF、PDF和CDF之前,有必要先简要介绍两种常用的概率分布:正态分布和均匀分布。

正态分布: 也称为高斯分布或钟形曲线,正态分布以其均值为中心对称。它广泛应用于描述自然界中的许多现象。诸如人口身高、标准化考试成绩、测量误差等多种实际数据集都呈现正态分布特征。

均匀分布: 在均匀分布中,给定范围内的每个结果具有相等的概率。这是最基本的概率分布形式,常用于描述每个结果等可能出现的情况,如公平骰子的投掷结果或0到1之间随机数的选取。

图1左侧展示了正态分布,呈现典型的钟形曲线,以平均值(此处为0)为中心。可以观察到,大多数数值集中在中心区域。右侧图表表示均匀分布,在0到1之间呈现均匀分布,表明每个值具有相等的出现概率。

在数据科学和统计学研究中,理解概率分布方式是核心任务。概率分布函数在这方面发挥着关键作用。本文将详细讨论概率密度函数(PDF)概率质量函数(PMF)累积分布函数(CDF)的概念。我们还将探讨如何从PMF或PDF推导CDF,并为每种情况提供具体示例。

概率质量函数(PMF)

概率质量函数(PMF)专用于描述离散随机变量。它定义了离散随机变量取特定值的概率。PMF为表示不同离散结果的概率提供了一种方法。

例如,在硬币翻转实验中,可能的结果只有正面和反面两种。公平硬币翻转的PMF可以表示为:

P(正面) = 0.5P(反面) = 0.5

另一个典型示例是投掷六面骰子。PMF表明每个结果(1,2,3,4,5,6)的概率均为0.167(约等于1/6)。

概率密度函数(PDF)

概率密度函数(PDF)用于描述连续随机变量。与为离散值分配概率的PMF不同,PDF描述了随机变量落在特定范围内的可能性。在连续分布中,任一具体点的概率为零,但我们可以通过对PDF在某个区间上进行积分来计算变量落在该区间内的概率。

正态分布(也称为高斯分布)是最常用的连续概率分布之一。其PDF可以表示为:

PDF给出了连续随机变量不同值的相对可能性。

下图直观地展示了PDF和PMF。左图显示了PDF的钟形曲线,曲线下的面积代表连续变量的概率。曲线的峰值位于均值处,其展开程度由标准差决定。右图展示了PMF(以六面骰子投掷为例),表示离散结果,每个可能的结果具有相等的概率。PMF为每个可能的结果分配了具体的概率值。

图3:概率密度函数(左)和概率质量函数(右)的图形表示。

累积分布函数(CDF)

累积分布函数(CDF)是一个函数,它定义了随机变量 X 小于或等于特定值 x 的概率。在数学上CDF 定义为:

F(x) = P(X ≤ x)

CDF 可以理解为概率的"累积和"。它从 0 开始,随着随机变量值的增加而增加,最终达到 1(表示总概率)。

为了更好地理解这些概念,我们将通过两个实例来说明,这些实例与前面解释 PDF 和 PMF 时使用的例子相对应:

示例1:离散随机变量的 CDF(骰子投掷)

考虑投掷一个标准六面骰子的情况。可能的结果是 {1,2,3,4,5,6},每个结果的概率均为 0.167(约等于 1/6)。

我们可以通过累加每个结果的概率来构建 CDF:

当 x = 1 时:P(X ≤ 1) 是结果小于或等于 1 的概率。F(1) = P(X = 1) = 0.167

当 x = 2 时:P(X ≤ 2) 是结果小于或等于 2 的概率。F(2) = P(X ≤ 2) = P(X = 1) + P(X = 2) = 0.167 + 0.167 = 0.333

依此类推,当 x = 6 时,CDF 包括了所有可能的结果(因为骰子不可能产生大于 6 的结果),因此总概率为 1。F(6) = P(X ≤ 6) = P(X = 1) + P(X = 2) + ... + P(X = 6) = 1

由此可见CDF 是逐步增加的,累积了每个结果的概率。如果我们绘制这个函数,会得到一个阶梯状的图形,这是离散变量 CDF 的典型特征。

示例2:连续随机变量的 CDF(均匀分布)

现在让我们考虑一个连续变量的情况。假设 X 遵循 0 到 1 之间的均匀分布。均匀分布的 PDF 在区间 [0,1] 内为常数 1,在其他区间为 0。

我们可以通过对 PDF 进行积分来计算 CDF。

对于 x = 0.2,CDF 就是从 0 到 0.2 的 PDF 下的面积。我们对 PDF 在区间 [0, 0.2] 上积分,得到结果 0.2。

对于 x = 1,我们对 PDF 在区间 [0, 1] 上积分,CDF 的值为 1。

由于这是均匀分布,CDF 从 0 线性增加到 1。如果我们绘制这个函数,如下图所示会得到一条从点 (0, 0) 到点 (1, 1) 的直线,反映了 0 和 1 之间所有值具有相等概率的特性。

图4:左图显示了离散随机变量(骰子投掷)的 CDF,展示了骰子投掷结果概率的阶梯式累积。右图是连续随机变量(均匀分布)的 CDF,显示了从 0 到 1 的连续均匀分布概率的平滑线性增加。

结论

累积分布函数(CDF)是理解离散和连续设置中概率分布的强大工具。它使我们能够直观地看到任何给定点之前的累积概率,特别适用于计算区间概率。这些概念在数据分析、统计推断和机器学习算法中有广泛的应用。对于那些正在学习数据科学和统计学的读者,深入理解这些基本概念将为更高级的主题奠定坚实的基础。

https://avoid.overfit.cn/post/4571cfdbae7b43b2b6db94769f433d66

作者:Uzmasherali

目录
相关文章
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术深度解析:从基础到应用的全面介绍
人工智能(AI)技术的迅猛发展,正在深刻改变着我们的生活和工作方式。从自然语言处理(NLP)到机器学习,从神经网络到大型语言模型(LLM),AI技术的每一次进步都带来了前所未有的机遇和挑战。本文将从背景、历史、业务场景、Python代码示例、流程图以及如何上手等多个方面,对AI技术中的关键组件进行深度解析,为读者呈现一个全面而深入的AI技术世界。
151 10
|
5天前
|
缓存 算法 Oracle
深度干货 如何兼顾性能与可靠性?一文解析YashanDB主备高可用技术
数据库高可用(High Availability,HA)是指在系统遇到故障或异常情况时,能够自动快速地恢复并保持服务可用性的能力。如果数据库只有一个实例,该实例所在的服务器一旦发生故障,那就很难在短时间内恢复服务。长时间的服务中断会造成很大的损失,因此数据库高可用一般通过多实例副本冗余实现,如果一个实例发生故障,则可以将业务转移到另一个实例,快速恢复服务。
深度干货  如何兼顾性能与可靠性?一文解析YashanDB主备高可用技术
|
14天前
|
Kubernetes Linux 虚拟化
入门级容器技术解析:Docker和K8s的区别与关系
本文介绍了容器技术的发展历程及其重要组成部分Docker和Kubernetes。从传统物理机到虚拟机,再到容器化,每一步都旨在更高效地利用服务器资源并简化应用部署。容器技术通过隔离环境、减少依赖冲突和提高可移植性,解决了传统部署方式中的诸多问题。Docker作为容器化平台,专注于创建和管理容器;而Kubernetes则是一个强大的容器编排系统,用于自动化部署、扩展和管理容器化应用。两者相辅相成,共同推动了现代云原生应用的快速发展。
78 11
|
23天前
|
域名解析 负载均衡 安全
DNS技术标准趋势和安全研究
本文探讨了互联网域名基础设施的结构性安全风险,由清华大学段教授团队多年研究总结。文章指出,DNS系统的安全性不仅受代码实现影响,更源于其设计、实现、运营及治理中的固有缺陷。主要风险包括协议设计缺陷(如明文传输)、生态演进隐患(如单点故障增加)和薄弱的信任关系(如威胁情报被操纵)。团队通过多项研究揭示了这些深层次问题,并呼吁构建更加可信的DNS基础设施,以保障全球互联网的安全稳定运行。
|
23天前
|
缓存 网络协议 安全
融合DNS技术产品和生态
本文介绍了阿里云在互联网基础资源领域的最新进展和解决方案,重点围绕共筑韧性寻址、赋能新质生产展开。随着应用规模的增长,基础服务的韧性变得尤为重要。阿里云作为互联网资源的践行者,致力于推动互联网基础资源技术研究和自主创新,打造更韧性的寻址基础服务。文章还详细介绍了浙江省IPv6创新实验室的成立背景与工作进展,以及阿里云在IPv6规模化部署、DNS产品能力升级等方面的成果。此外,阿里云通过端云融合场景下的企业级DNS服务,帮助企业构建稳定安全的DNS系统,确保企业在数字世界中的稳定运行。最后,文章强调了全链路极致高可用的企业DNS解决方案,为全球互联网基础资源的创新提供了中国标准和数字化解决方案。
|
23天前
|
缓存 边缘计算 网络协议
深入解析CDN技术:加速互联网内容分发的幕后英雄
内容分发网络(CDN)是现代互联网架构的重要组成部分,通过全球分布的服务器节点,加速网站、应用和多媒体内容的传递。它不仅提升了访问速度和用户体验,还减轻了源站服务器的负担。CDN的核心技术包括缓存机制、动态加速、流媒体加速和安全防护,广泛应用于静态资源、动态内容、视频直播及大文件下载等场景,具有低延迟、高带宽、稳定性强等优势,有效降低成本并保障安全。
69 4
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
秒级响应 + 99.9%准确率:法律行业文本比对技术解析
本工具基于先进AI技术,采用自然语言处理和语义匹配算法,支持PDF、Word等格式,实现法律文本的智能化比对。具备高精度语义匹配、多格式兼容、高性能架构及智能化标注与可视化等特点,有效解决文本复杂性和法规更新难题,提升法律行业工作效率。
|
1月前
|
数据采集 存储 JavaScript
网页爬虫技术全解析:从基础到实战
在信息爆炸的时代,网页爬虫作为数据采集的重要工具,已成为数据科学家、研究人员和开发者不可或缺的技术。本文全面解析网页爬虫的基础概念、工作原理、技术栈与工具,以及实战案例,探讨其合法性与道德问题,分享爬虫设计与实现的详细步骤,介绍优化与维护的方法,应对反爬虫机制、动态内容加载等挑战,旨在帮助读者深入理解并合理运用网页爬虫技术。
|
1月前
|
机器学习/深度学习 自然语言处理 监控
智能客服系统集成技术解析和价值点梳理
在 2024 年的智能客服系统领域,合力亿捷等服务商凭借其卓越的技术实力引领潮流,它们均积极应用最新的大模型技术,推动智能客服的进步。
106 7
|
1月前
|
负载均衡 网络协议 算法
Docker容器环境中服务发现与负载均衡的技术与方法,涵盖环境变量、DNS、集中式服务发现系统等方式
本文探讨了Docker容器环境中服务发现与负载均衡的技术与方法,涵盖环境变量、DNS、集中式服务发现系统等方式,以及软件负载均衡器、云服务负载均衡、容器编排工具等实现手段,强调两者结合的重要性及面临挑战的应对措施。
104 3

推荐镜像

更多