谷歌将大模型集成在实体机器人中,能看、听、说执行57种任务

简介: 【9月更文挑战第17天】近年来,人工智能在多模态大模型领域取得显著进展。谷歌最新研发的Mobility VLA系统,将大模型与实体机器人结合,实现了视觉、语言和行动的融合,使机器人能理解并执行复杂多模态指令,如“我应该把这个放回哪里?”系统在真实环境测试中表现出色,但在计算资源、数据需求及伦理问题上仍面临挑战。相关论文发布于https://arxiv.org/abs/2407.07775。

近年来,人工智能领域取得了显著的进展,特别是在多模态大模型方面。谷歌的最新研究将大模型集成在实体机器人中,使其能够看、听、说并执行57种不同的任务。这一突破性的成果引起了广泛关注。

该研究的核心在于开发了一种名为Mobility VLA的系统,它结合了视觉、语言和行动的能力,使机器人能够理解并执行复杂的多模态指令。Mobility VLA系统由两个主要部分组成:一个是高级策略,它利用长期上下文的视觉语言模型来理解环境和用户的指令;另一个是低级策略,它基于拓扑图来生成机器人的实时动作。

Mobility VLA系统的独特之处在于它能够处理多种类型的输入,包括自然语言和图像。这使得机器人能够理解并执行诸如“我应该把这个放回哪里?”这样的复杂指令,同时它还能够根据之前记录的示范视频来学习环境的先验知识。

为了评估Mobility VLA系统的性能,研究人员在836平方米的真实世界环境中进行了实验。结果显示,该系统在处理之前无法解决的多模态指令时取得了很高的成功率。例如,当机器人被要求归还一个塑料箱时,它能够准确地找到正确的位置。

然而,尽管Mobility VLA系统取得了令人印象深刻的成果,但仍然存在一些挑战和限制。首先,该系统的训练和部署需要大量的计算资源和数据,这可能会限制其在实际应用中的可行性。其次,尽管该系统能够处理多种类型的输入,但仍然存在一些指令或情况是它无法理解或处理的。

此外,将大模型集成在实体机器人中还涉及到一些伦理和社会问题。例如,如果机器人在执行任务时出现错误或意外,谁应该对此负责?机器人是否应该被赋予自主决策的能力?这些问题都需要进一步的研究和讨论。

论文地址:https://arxiv.org/abs/2407.07775

目录
相关文章
|
13天前
|
存储 关系型数据库 分布式数据库
PolarDB开源数据库进阶课15 集成DeepSeek等大模型
本文介绍了如何在PolarDB数据库中接入私有化大模型服务,以实现多种应用场景。实验环境依赖于Docker容器中的loop设备模拟共享存储,具体搭建方法可参考相关系列文章。文中详细描述了部署ollama服务、编译并安装http和openai插件的过程,并通过示例展示了如何使用这些插件调用大模型API进行文本分析和情感分类等任务。此外,还探讨了如何设计表结构及触发器函数自动处理客户反馈数据,以及生成满足需求的SQL查询语句。最后对比了不同模型的回答效果,展示了deepseek-r1模型的优势。
46 0
|
23天前
|
人工智能 安全 机器人
LangBot:无缝集成到QQ、微信等消息平台的AI聊天机器人平台
LangBot 是一个开源的多模态即时聊天机器人平台,支持多种即时通信平台和大语言模型,具备多模态交互、插件扩展和Web管理面板等功能。
505 14
LangBot:无缝集成到QQ、微信等消息平台的AI聊天机器人平台
|
25天前
|
人工智能 开发框架 机器人
AstrBot:轻松将大模型接入QQ、微信等消息平台,打造多功能AI聊天机器人的开发框架,附详细教程
AstrBot 是一个开源的多平台聊天机器人及开发框架,支持多种大语言模型和消息平台,具备多轮对话、语音转文字等功能。
2822 15
AstrBot:轻松将大模型接入QQ、微信等消息平台,打造多功能AI聊天机器人的开发框架,附详细教程
|
2月前
|
人工智能 JSON 数据可视化
集成500+多模态现实任务!全新MEGA-Bench评测套件:CoT对开源模型反而有害?
多模态模型在处理图像、文本、音频等数据方面能力不断提升,但其性能评估一直是个挑战。为此,研究团队推出了MEGA-Bench评测套件,集成505个现实任务,涵盖广泛领域和数据类型,由16位专家标注。它采用灵活输出格式,提供多维度评估指标,并配有交互式可视化工具,为模型优化提供了重要支持。然而,评估过程复杂且耗时,COT方法对开源模型性能的影响也值得探讨。论文链接:https://arxiv.org/abs/2410.10563
80 29
|
2月前
|
数据采集 人工智能 算法
Seer:上海 AI Lab 与北大联合开源端到端操作模型,结合视觉预测与动作执行信息,使机器人任务提升成功率43%
Seer是由上海AI实验室与北大等机构联合推出的端到端操作模型,结合视觉预测与动作执行,显著提升机器人任务成功率。
87 20
Seer:上海 AI Lab 与北大联合开源端到端操作模型,结合视觉预测与动作执行信息,使机器人任务提升成功率43%
|
3月前
|
传感器 人工智能 自然语言处理
RDT:清华开源全球最大的双臂机器人操作任务扩散基础模型、代码与训练集,基于模仿能力机器人能够自主完成复杂任务
RDT(Robotics Diffusion Transformer)是由清华大学AI研究院TSAIL团队推出的全球最大的双臂机器人操作任务扩散基础模型。RDT具备十亿参数量,能够在无需人类操控的情况下自主完成复杂任务,如调酒和遛狗。
210 22
RDT:清华开源全球最大的双臂机器人操作任务扩散基础模型、代码与训练集,基于模仿能力机器人能够自主完成复杂任务
|
4月前
|
人工智能 自然语言处理 算法
具身智能高校实训解决方案 ----从AI大模型+机器人到通用具身智能
在具身智能的发展历程中,AI 大模型的出现成为了关键的推动力量。高校作为培养未来科技人才的摇篮,需要紧跟这一前沿趋势,开展具身智能实训课程。通过将 AI 大模型与具备 3D 视觉的机器人相结合,为学生搭建一个实践平台。
330 64
|
3月前
|
机器学习/深度学习 人工智能 机器人
NeurIPS 2024:机器人操纵世界模型来了,成功率超过谷歌RT-1 26.6%
PIVOT-R是一种新型世界模型,专注于预测与任务相关的路点,以提高语言引导的机器人操作的性能和效率。该模型由路点感知世界模型(WAWM)和轻量级动作预测模块组成,辅以异步分层执行器(AHE),在SeaWave基准测试中表现优异,平均相对改进达19.45%,执行效率提高28倍。
89 26
|
3月前
|
人工智能 安全 机器人
OpenAI重拾规则系统,用AI版机器人定律守护大模型安全
在人工智能领域,大语言模型(LLM)展现出强大的语言理解和生成能力,但也带来了安全性和可靠性挑战。OpenAI研究人员提出“规则基于奖励(RBR)”方法,通过明确规则引导LLM行为,确保其符合人类价值观和道德准则。实验显示,RBR方法在安全性与有用性之间取得了良好平衡,F1分数达97.1。然而,规则制定和维护复杂,且难以完全捕捉语言的多样性。论文:https://arxiv.org/pdf/2411.01111。
132 13
|
3月前
|
Linux API 开发工具
魔搭llamafile集成:让大模型开箱即用
Llamafile是一个将大模型和其所需运行环境,全封装在一个可执行文件中的开源创新项目。为了方便广大开发者能以更低的门槛使用大模型,魔搭社区上提供了大量优秀模型的llamafile格式。

热门文章

最新文章