手把手体验Hologres的OLAP数据分析

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 本方案基于阿里云实时数仓Hologres与DataWorks数据集成,实现数据库RDS到Hologres的实时同步,充分发挥Hologres强大的查询分析能力,提供一站式高性能OLAP数据分析。Hologres支持标准SQL,无缝对接主流BI工具,适用于多种场景。方案包括创建VPC、开通Hologres、开通DataWorks、创建公网NAT、建立Hologres表、实时同步数据、OLAP分析及资源清理等步骤,为轻量级OLAP分析平台搭建奠定基础。

Hologres是阿里云自研一站式实时数仓,统一数据平台架构,支持海量结构化/半结构化数据的实时写入、实时更新、实时加工、实时分析,支持标准SQL(兼容PostgreSQL协议),无缝对接主流BI工具,支持OLAP查询、即席分析、在线服务、向量计算多个场景,分析性能打破TPC-H世界记录,与MaxCompute、Flink、DataWorks深度融合,提供离在线一体化全栈数仓解决方案。

DataWorks基于阿里云ODPS/EMR/CDP等大数据引擎,为数据仓库/数据湖/湖仓一体等解决方案提供统一的全链路大数据开发治理平台。作为阿里巴巴数据中台的建设者,DataWorks从2009年起不断沉淀阿里巴巴大数据建设方法论,同时与数万名政务/金融/零售/互联网/能源/制造等客户携手,助力产业数字化升级。

本方案基于阿里云实时数仓Hologres和DataWorks数据集成,通过简单的产品操作即可完成数据库RDS实时同步数据到Hologres,并通过Hologres强大的查询分析性能,完成一站式高性能的OLAP数据分析。
image.png

整体方案的体验手动部署如下:

1、创建专有网络VPC和交换机

为确保后续任务的网络连通,请务必保证Hologres与DataWorks资源组使用同⼀个VPC。

image.png

image.png

在创建专有网络页面,您可查看到创建的专有网络VPC和交换机的ID、实例名称等信息。
image.png

2、试用实时数仓Hologres。新用户可以有3个月免费试用期。

image.png

在实时数仓Hologres面板,根据如下参数说明进行配置,未提及的参数保持默认即可,单击立即试用。
image.png

image.png

大概需要5-10分钟,在实例列表页面,等待运行状态变为运行正常,即可正常使用。
image.png

3、开通DataWorks

image.png

image.png

image.png
创建工作空间列表。注意需要类似XXXX_123这种格式,即字母、数字、下划线都用到才可以。
image.png

image.png

在资源组列表页面,等待目标资源组的状态变为运行中,即可正常使用资源组。
image.png

4、创建公网NAT

首次使用NAT网关时,在创建公网NAT网关页面关联角色创建区域,单击创建关联角色。角色创建成功后即可创建NAT网关。
image.png

image.png
image.png

image.png

image.png
返回如下页面,表示您已创建成功,可以查看到创建的弹性公网IP、NAT网关等资源的资源ID。
image.png

5、创建Hologres表

在实例列表页面,但是实例ID。
image.png

在实例详情页面,单击登录实例,进入HoloWeb。
image.png

image.png

在顶部菜单栏中,单击SQL编辑器。

image.png

新建SQL查询
image.png

新建Hologres内部表。

将如下命令复制并粘贴至临时Query查询页签中,单击执行,创建Hologres内部表hologres_dataset_github_event.hologres_github_event,后续会将数据实时写入至该表中。

-- 新建schema用于创建内表并导入数据
CREATE SCHEMA IF NOT EXISTS hologres_dataset_github_event;

DROP TABLE IF EXISTS hologres_dataset_github_event.hologres_github_event;

BEGIN;
CREATE TABLE hologres_dataset_github_event.hologres_github_event (
 id bigint PRIMARY KEY,
 actor_id bigint,
 actor_login text,
 repo_id bigint,
 repo_name text,
 org_id bigint,
 org_login text,
 type text,
 created_at timestamp with time zone NOT NULL,
 action text, 
 commit_id text,
 member_id bigint,
 language text
);
CALL set_table_property ('hologres_dataset_github_event.hologres_github_event', 'distribution_key', 'id');
CALL set_table_property ('hologres_dataset_github_event.hologres_github_event', 'event_time_column', 'created_at');
CALL set_table_property ('hologres_dataset_github_event.hologres_github_event', 'clustering_key', 'created_at');

COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.id IS '事件ID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.actor_id IS '事件发起⼈ID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.actor_login IS '事件发起⼈登录名';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.repo_id IS 'repoID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.repo_name IS 'repo名称';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.org_id IS 'repo所属组织ID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.org_login IS 'repo所属组织名称';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.type IS '事件类型';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.created_at IS '事件发⽣时间';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.action IS '事件行为';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.commit_id IS '提交记录ID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.member_id IS '成员ID';
COMMENT ON COLUMN hologres_dataset_github_event.hologres_github_event.language IS '编程语⾔';

COMMIT;
AI 代码解读

执行结束
image.png

6、实时同步数据至Hologres

在管理中心页面,在下拉框中选择默认⼯作空间,单击进入管理中心。
image.png

在左侧导航栏中,选择数据源 > 数据源列表。

image.png

创建MySQL数据源。

image.png

image.png

配置完成后,在连接配置区域,找到您创建的资源组,单击其右侧的测试连通性。

image.png

image.png
image.png

创建Hologres数据源。

image.png

image.png
image.png

image.png

创建实时同步任务。
image.png

在数据集成页面,在创建同步任务中,选择来源与去向数据源,单击开始创建。

来源:选择MySQL。去向:选择Hologres

image.png

在基本信息区域中,配置任务信息。 新任务名称:data_test。 同步类型:选择整库实时。

image.png

在网络与资源配置区域中,配置任务网络连通。

image.png

image.png

image.png

实时同步任务设置。在选择要同步的库表区域的源端库表中,勾选github_public_event表,然后右移。

image.png
image.png

在目标表映射区域,勾选github_public_event表,单击批量刷新映射。基于上述已创建的Hologres内部表,将目标Schema名改为hologres_dataset_github_event,目标表名改为hologres_github_event,单击完成配置。
image.png

image.png

image.png

在任务列表页面,单击启动。

image.png

image.png
image.png

在任务详情页面,您可查看到任务的执行情况,请耐心等待任务执行完成。

image.png

进度如下:
image.png

image.png

7、实时OLAP分析

返回至SQL编辑器·HoloWeb页签。在临时Query查询页签中,执行如下命令,查询实时更新的过去24小时GitHub最活跃项⽬。


SELECT
  repo_name,
  COUNT(*) AS events
FROM
  hologres_dataset_github_event.hologres_github_event
WHERE
  created_at >= now() - interval '1 day'
GROUP BY
  repo_name
ORDER BY
  events DESC
LIMIT 5;
AI 代码解读

查看同步的相关监控数据

image.png
image.png
image.png

image.png
image.png
image.png

8、清除资源

删除实时数仓Hologres。

image.png

image.png

image.png

image.png

删除实时同步任务、数据源、资源组和工作空间。

image.png

在数据集成页面,找到目标同步任务,单击其右侧操作列下的停止。

image.png

任务停止以后,选择其右侧操作列下的更多 > 删除。
image.png

image.png

在工作空间列表页面,找到目标工作空间,单击其右侧操作列下的管理。

image.png

在数据源页面,分别单击Hologre和MySQL数据源右侧操作列下的删除。

image.png

image.png

在DataWorks控制台左侧导航栏中,单击资源组列表,找到您创建的资源组

image.png

image.png

image.png

删除工作空间列表
image.png
image.png

删除公网NAT和弹性公网IP。
image.png
image.png

image.png

image.png

image.png

删除VPC及交换机。

image.png

image.png

9、体验总结

1)手动部署的需要操作配置的产品有VPC、NAT、RDA、Hologres、Dataworks,而一键部署就省去了很多繁琐的操作。

2)因为体验的数据量比较小,希望文档可以增加在大数据量迁移时的性能调优策略。

3)文档中针对Hologres中设置细粒度的访问控制和数据加密的说明较为简略,但生产环境中确保数据安全至关重要,建议增加这部分的详细说明。

4)在多用户或多部门共享平台时,如何进行多租户管理和资源隔离机制。

5)对于不同规模的数据和分析需求,如何更精细地控制成本(如存储计算分离、按需付费优化)缺乏具体指导。

本方案为搭建轻量OLAP分析平台提供了坚实的基础,但在大数量分析、多租户管理、成本优化及用户支持方面还有提升空间。通过针对性的改进和补充,可以更好地满足不同用户复杂多变的数据分析需求。

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
目录
打赏
0
15
18
1
454
分享
相关文章
基于 Flink+Paimon+Hologres 搭建淘天集团湖仓一体数据链路
本文整理自淘天集团高级数据开发工程师朱奥在Flink Forward Asia 2024的分享,围绕实时数仓优化展开。内容涵盖项目背景、核心策略、解决方案、项目价值及未来计划五部分。通过引入Paimon和Hologres技术,解决当前流批存储不统一、实时数据可见性差等痛点,实现流批一体存储与高效近实时数据加工。项目显著提升了数据时效性和开发运维效率,降低了使用门槛与成本,并规划未来在集团内推广湖仓一体架构,探索更多技术创新场景。
917 3
基于 Flink+Paimon+Hologres 搭建淘天集团湖仓一体数据链路
云上玩转Qwen3系列之三:PAI-LangStudio x Hologres构建ChatBI数据分析Agent应用
PAI-LangStudio 和 Qwen3 构建基于 MCP 协议的 Hologres ChatBI 智能 Agent 应用,通过将 Agent、MCP Server 等技术和阿里最新的推理模型 Qwen3 编排在一个应用流中,为大模型提供了 MCP+OLAP 的智能数据分析能力,使用自然语言即可实现 OLAP 数据分析的查询效果,减少了幻觉。开发者可以基于该模板进行灵活扩展和二次开发,以满足特定场景的需求。
Hologres实时湖仓能力入门实践
本文由武润雪(栩染)撰写,介绍Hologres 3.0版本作为一体化实时湖仓平台的升级特性。其核心能力包括湖仓存储一体、多模式计算一体、分析服务一体及Data+AI一体,极大提升数据开发效率。文章详细解析了两种湖仓架构:MaxCompute + Hologres实现离线实时一体化,以及Hologres + DLF + OSS构建开放湖仓架构,并深入探讨元数据抽象、权限互通等重点功能,同时提供具体使用说明与Demo演示。
MCP+Hologres+LLM搭建数据分析Agent
本文探讨了LLM大模型在数据分析领域的挑战,并介绍了Hologres结合MCP协议和LLM搭建数据分析Agent的解决方案。传统LLM存在实时数据接入能力不足、上下文记忆短等问题,而Hologres通过高性能数据分析能力和湖仓一体支持,解决了这些痛点。MCP协议标准化了LLM与外部系统的连接,提升集成效率。文中详细描述了如何配置Hologres MCP Server与Claude Desktop集成,并通过TPC-H样例数据展示了分析流程和效果。最后总结指出,该方案显著提高了复杂分析任务的实时性和准确性,为智能决策提供支持。
实时数仓Hologres V3.1版本发布,Serverless型实例从零开始构建OLAP系统
Hologres推出Serverless型实例,支持按需计费、无需独享资源,适合新业务探索分析。高性能查询内表及MaxCompute/OSS外表,弹性扩展至512CU,性能媲美主流开源产品。新增Dynamic Table升级、直读架构优化及ChatBI解决方案,助力高效数据分析。
实时数仓Hologres V3.1版本发布,Serverless型实例从零开始构建OLAP系统
DataWorks+Hologres:打造企业级实时数仓与高效OLAP分析平台
本方案基于阿里云DataWorks与实时数仓Hologres,实现数据库RDS数据实时同步至Hologres,并通过Hologres高性能OLAP分析能力,完成一站式实时数据分析。DataWorks提供全链路数据集成与治理,Hologres支持实时写入与极速查询,二者深度融合构建离在线一体化数仓,助力企业加速数字化升级。
Hologres+函数计算+Qwen3,对接MCP构建企业级数据分析 Agent
本文介绍了通过阿里云Hologres、函数计算FC和通义千问Qwen3构建企业级数据分析Agent的解决方案。大模型在数据分析中潜力巨大,但面临实时数据接入与跨系统整合等挑战。MCP(模型上下文协议)提供标准化接口,实现AI模型与外部资源解耦。方案利用SSE模式连接,具备高实时性、良好解耦性和轻量级特性。Hologres作为高性能实时数仓,支持多源数据毫秒级接入与分析;函数计算FC以Serverless模式部署,弹性扩缩降低成本;Qwen3则具备强大的推理与多语言能力。用户可通过ModelScope的MCP Playground快速体验,结合TPC-H样例数据完成复杂查询任务。
体验AnalyticDB无感集成(Zero-ETL)下的一站式数据分析,完成任务可领取300社区积分兑换各种商城好礼!
瑶池数据库的无感数据集成实现秒级同步,性能提升15%。借助AnalyticDB的Zero-ETL功能,快速搭建OLTP与OLAP同步链路,一站式管理数据分析。参与活动完成任务即可领取300社区积分,还有机会抽取红酒收纳箱、键盘鼠标垫、福禄寿淘公仔等好礼!
​Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
​Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
130 4
Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
本文介绍了阿里云实时数仓Hologres负责人姜伟华在Flink Forward Asia 2024上的分享,涵盖实时数仓的发展历程、从实时数仓到实时湖仓的演进,以及总结。文章通过三代实时数仓架构的演变,详细解析了Lambda架构、Kafka实时数仓分层+OLAP、Hologres实时数仓分层复用等方案,并探讨了未来从实时数仓到实时湖仓的演进方向。最后,结合实际案例和Demo展示了Hologres + Flink + Paimon在实时湖仓中的应用,帮助用户根据业务需求选择合适的方案。
1032 20
Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问