超分辨率相关的开源项目

简介: 该文档介绍了多种超分辨率模型及其GitHub项目地址,包括Real-ESRGAN(优化真实图片质量)、RCAN(基于残差结构与通道注意力机制)、SwinIR(基于Swin Transformer的图像恢复)、FSRCNN(轻量级快速超分辨率)、EDSR(增强型深度残差网络)、SRGAN(利用GAN的超分辨率模型)及LapSRN(多级Laplacian金字塔超分辨率)。


  • Real-ESRGAN: 这是ESRGAN的一个升级版,针对真实世界图片进行了优化,提供了更好的视觉质量和更少的伪影。


项目地址:GitHub : https://github.com/xinntao/Real-ESRGAN


  • RCAN (Residual Channel Attention Network): RCAN是一个基于残差结构和通道注意力机制的超分辨率模型,它在多个基准数据集上表现优异。


项目地址:GitHub : https://github.com/yulunzhang/RCAN


  • SwinIR (Swin Transformer based Image Restoration): 这是一个基于Swin Transformer的图像恢复模型,适用于多种低级视觉任务,包括超分辨率。


项目地址:GitHub: https://github.com/JingyunLiang/SwinIR



  • FSRCNN (Fast Super-Resolution Convolutional Neural Network) 轻量级且快速的超分辨率模型。


GitHub地址:https://github.com/wangtianyu2016/FSRCNN



  • EDSR (Enhanced Deep Residual Networks for Single Image Super-Resolution) 基于残差网络的超分辨率算法。


GitHub地址:https://github.com/sanghyun-son/EDSR-PyTorch



  • SRGAN (Super-Resolution Generative Adversarial Network) 利用GAN进行超分辨率的经典模型。


GitHub地址:https://github.com/tensorlayer/srgan



  • LapSRN (Laplacian Pyramid Super-Resolution Network) 使用Laplacian金字塔进行多级超分辨率。


GitHub地址:https://github.com/phoenix104104/LapSRN



相关文章
|
机器学习/深度学习 编解码
ICCV 2023 超分辨率(Super-Resolution)论文汇总
ICCV 2023 超分辨率(Super-Resolution)论文汇总
964 0
|
XML Java 数据库连接
mybatis-plus逆向工程详解
mybatis-plus逆向工程详解
705 0
|
机器学习/深度学习 编解码 人工智能
InvSR:开源图像超分辨率生成模型,提升分辨率,修复老旧照片为超清图像
InvSR 是一个创新的图像超分辨率模型,基于扩散模型的逆过程恢复高分辨率图像。它通过深度噪声预测器和灵活的采样机制,能够高效地提升图像分辨率,适用于老旧照片修复、视频监控、医疗成像等多个领域。
2523 9
InvSR:开源图像超分辨率生成模型,提升分辨率,修复老旧照片为超清图像
|
机器学习/深度学习 Web App开发 编解码
最高增强至1440p,阿里云发布端侧实时超分工具,低成本实现高画质
近日,阿里云机器学习PAI团队发布一键端侧超分工具,可实现在设备和网络带宽不变的情况下,将移动端视频分辨率提升1倍,最高可增强至1440p,将大幅提升终端用户的观看体验,该技术目前已在优酷、夸克、UC浏览器等多个APP中广泛应用。
最高增强至1440p,阿里云发布端侧实时超分工具,低成本实现高画质
|
计算机视觉 Python
图像增强、锐化,利用 Python-OpenCV 来实现 4 种方法!
图像增强目的使得模糊图片变得更加清晰、图片模糊的原因是因为像素灰度差值变化不大,图片各区域产生视觉效果似乎都是一样的, 没有较为突出的地方,看起来不清晰的感觉 解决这个问题的最直接简单办法,放大像素灰度值差值、使图像中的细节更加清晰。
图像增强、锐化,利用 Python-OpenCV 来实现 4 种方法!
|
12月前
|
机器学习/深度学习 编解码 人工智能
STAR:南京大学联合字节开源视频超分辨率增强生成框架,视频清晰度一键提升,支持从低分辨率视频生成高分辨率视频
STAR 是由南京大学、字节跳动和西南大学联合推出的视频超分辨率框架,能够将低分辨率视频提升为高分辨率,同时保持细节清晰度和时间一致性。
2388 13
STAR:南京大学联合字节开源视频超分辨率增强生成框架,视频清晰度一键提升,支持从低分辨率视频生成高分辨率视频
|
6月前
|
机器学习/深度学习 边缘计算 算法
金属材料表面六种缺陷类型数据集 | 适用于YOLO等视觉检测模型(1800张图片已划分、已标注)
本数据集包含1800张金属表面缺陷图像,涵盖裂纹、夹杂、凹坑等6类缺陷,已标注并按train/val/test划分,支持YOLO、Faster R-CNN等模型训练,适用于工业质检与智能检测研究。
金属材料表面六种缺陷类型数据集 | 适用于YOLO等视觉检测模型(1800张图片已划分、已标注)
|
6月前
|
人工智能 自然语言处理 数据可视化
开源AI BI可视化工具-dataline
DataLine 是一个开源数据分析工具,支持自然语言交互,可快速生成图表与报告。数据默认存储本地,保障隐私安全,兼容 Postgres、MySQL、Excel 等多种数据源。提供可视化仪表盘、触发器及知识库功能,支持 Windows、Mac、Linux 平台运行,并可通过 Docker 部署,适合企业使用。
|
12月前
|
机器学习/深度学习 编解码 人工智能
SeedVR:高效视频修复模型,支持任意长度和分辨率,生成真实感细节
SeedVR 是南洋理工大学和字节跳动联合推出的扩散变换器模型,能够高效修复低质量视频,支持任意长度和分辨率,生成真实感细节。
744 16
SeedVR:高效视频修复模型,支持任意长度和分辨率,生成真实感细节
|
10月前
|
人工智能 小程序 算法
【01】AI制作音乐之三款AI音乐软件推荐,包含AI编曲-AI伴奏-AI混音合成remix等-其次关于音乐版权的阐述-跟随卓伊凡学习如何AI制作音乐-优雅草卓伊凡
【01】AI制作音乐之三款AI音乐软件推荐,包含AI编曲-AI伴奏-AI混音合成remix等-其次关于音乐版权的阐述-跟随卓伊凡学习如何AI制作音乐-优雅草卓伊凡
1749 14

热门文章

最新文章