超分辨率相关的开源项目

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
简介: 该文档介绍了多种超分辨率模型及其GitHub项目地址,包括Real-ESRGAN(优化真实图片质量)、RCAN(基于残差结构与通道注意力机制)、SwinIR(基于Swin Transformer的图像恢复)、FSRCNN(轻量级快速超分辨率)、EDSR(增强型深度残差网络)、SRGAN(利用GAN的超分辨率模型)及LapSRN(多级Laplacian金字塔超分辨率)。


  • Real-ESRGAN: 这是ESRGAN的一个升级版,针对真实世界图片进行了优化,提供了更好的视觉质量和更少的伪影。


项目地址:GitHub : https://github.com/xinntao/Real-ESRGAN


  • RCAN (Residual Channel Attention Network): RCAN是一个基于残差结构和通道注意力机制的超分辨率模型,它在多个基准数据集上表现优异。


项目地址:GitHub : https://github.com/yulunzhang/RCAN


  • SwinIR (Swin Transformer based Image Restoration): 这是一个基于Swin Transformer的图像恢复模型,适用于多种低级视觉任务,包括超分辨率。


项目地址:GitHub: https://github.com/JingyunLiang/SwinIR



  • FSRCNN (Fast Super-Resolution Convolutional Neural Network) 轻量级且快速的超分辨率模型。


GitHub地址:https://github.com/wangtianyu2016/FSRCNN



  • EDSR (Enhanced Deep Residual Networks for Single Image Super-Resolution) 基于残差网络的超分辨率算法。


GitHub地址:https://github.com/sanghyun-son/EDSR-PyTorch



  • SRGAN (Super-Resolution Generative Adversarial Network) 利用GAN进行超分辨率的经典模型。


GitHub地址:https://github.com/tensorlayer/srgan



  • LapSRN (Laplacian Pyramid Super-Resolution Network) 使用Laplacian金字塔进行多级超分辨率。


GitHub地址:https://github.com/phoenix104104/LapSRN



相关文章
|
3月前
|
机器学习/深度学习 自然语言处理 前端开发
国产开源Sora,视频生成CogVideoX再开源!更大尺寸,更高质量!
CogVideoX 又双叒叕开源啦!这次开源了更大尺寸!看看和之前有什么区别吧?
|
3月前
|
存储 人工智能 开发框架
一款.NET开发的AI无损放大工具
【8月更文挑战第11天】本示例介绍了一个基于.NET开发的AI无损图像放大工具架构。前端采用WPF或ASP.NET Core构建,提供直观的用户界面;后端包括图片上传、放大处理与结果存储服务。AI模型处理层负责加载预训练模型及图像预测放大。示例代码展示了图片上传与放大服务的关键逻辑,以及WPF界面设计。实际开发需关注模型选择、性能优化、用户体验、格式兼容与部署维护等方面。
|
3月前
Axure 多平台自适应
Axure 多平台自适应
32 0
|
6月前
|
编解码 人工智能
DiT架构大一统:一个框架集成图像、视频、音频和3D生成,可编辑、能试玩
【5月更文挑战第23天】研究人员提出Lumina-T2X框架,统一生成和编辑图像、视频、音频及3D内容。使用Flow-based Large Diffusion Transformer (Flag-DiT)模型,实现多模态生成,支持内容编辑。尽管面临训练资源需求高、生成质量不及人类创作等问题,该框架在娱乐、广告等领域有广泛应用潜力。[论文链接](https://arxiv.org/pdf/2405.05945)
105 1
|
6月前
|
Java 数据安全/隐私保护
SpringBoot【集成Thumbnailator】Google开源图片工具缩放+区域裁剪+水印+旋转+保持比例等(保姆级教程含源代码)
SpringBoot【集成Thumbnailator】Google开源图片工具缩放+区域裁剪+水印+旋转+保持比例等(保姆级教程含源代码)
273 0
|
机器学习/深度学习 存储 编解码
HarmonyOS学习路之开发篇—AI功能开发(图像超分辨率)
针对图片分辨率不足的问题,传统的解决方案是使用双线性或双三次插值的方法来放大图像;而针对图片压缩噪声的问题,传统的解决方案则是通过各种算法实现平滑、去噪。
HarmonyOS学习路之开发篇—AI功能开发(图像超分辨率)
HarmonyOS学习路之开发篇—多媒体开发(图像开发 二)
图像编码就是将PixelMap图像编码成不同存档格式图片,用于后续其他处理,比如保存、传输等。当前仅支持JPEG格式。
HarmonyOS学习路之开发篇—多媒体开发(图像开发 二)
|
编解码 人工智能 安全
开源强大的去马赛克工具
如果你认为将密码或其他私密文本数据像素化就能保护它们不被窥见,那你真是太天真了,你的信息并没有你想象的那么安全。像素化(也称为马赛克)是一种常用的手段,可以大幅降低图像敏感区域的分辨率来隐藏信息。
550 0
|
计算机视觉
HarmonyOS学习路之开发篇—多媒体开发(图像开发 一)
HarmonyOS图像模块支持图像业务的开发,常见功能如图像解码、图像编码、基本的位图操作、图像编辑等。当然,也支持通过接口组合来实现更复杂的图像处理逻辑。
|
机器学习/深度学习 人工智能 PyTorch
神工鬼斧惟肖惟妙,M1 mac系统深度学习框架Pytorch的二次元动漫动画风格迁移滤镜AnimeGANv2+Ffmpeg(图片+视频)快速实践
前段时间,业界鼎鼎有名的动漫风格转化滤镜库AnimeGAN发布了最新的v2版本,一时间街谈巷议,风头无两。提起二次元,目前国内用户基数最大的无疑是抖音客户端,其内置的一款动画转换滤镜“变身漫画”,能够让用户在直播中,把自己的实际外貌转换为二次元“画风”。对于二次元粉丝来说,“打破次元壁,变身纸片人”这种自娱自乐方式可谓屡试不爽
神工鬼斧惟肖惟妙,M1 mac系统深度学习框架Pytorch的二次元动漫动画风格迁移滤镜AnimeGANv2+Ffmpeg(图片+视频)快速实践

热门文章

最新文章

  • 1
    2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
    13
  • 2
    2024重生之回溯数据结构与算法系列学习(11)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
    9
  • 3
    2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    11
  • 4
    2024重生之回溯数据结构与算法系列学习之单双链表精题详解(9)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    12
  • 5
    2024重生之回溯数据结构与算法系列学习(8)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    14
  • 6
    2024重生之回溯数据结构与算法系列学习(7)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    11
  • 7
    2024重生之回溯数据结构与算法系列学习之王道第2.3章节之线性表精题汇总二(5)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    8
  • 8
    23
    7
  • 9
    2024重生之回溯数据结构与算法系列学习之单双链表精题(4)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    15
  • 10
    2024重生之回溯数据结构与算法系列学习之单双链表【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    9