社区供稿 | 元象发布255B大规模MoE开源大模型,落地应用登顶港台榜

简介: 元象XVERSE发布 中国最大MoE开源模型:XVERSE-MoE-A36B,加速AI应用低成本部署,将国产开源提升至国际领先水平。

元象XVERSE发布 中国最大MoE开源模型:XVERSE-MoE-A36B,加速AI应用低成本部署,将国产开源提升至国际领先水平。

该模型总参数255B,激活参数36B,效果能大致达到超过100B大模型的「跨级」性能跃升,同时训练时间减少30%,推理性能提升100%,使每token成本大幅下降。元象「高性能全家桶」系列全部开源,无条件免费商用,让海量中小企业、研究者和开发者能按需选择。

MoE(Mixture of Experts)是业界最前沿的混合专家模型架构 ,将多个细分领域的专家模型组合成一个超级模型,打破了传统扩展定律(Scaling Law)的局限,在扩大模型规模的同时,保持模型性能最大化,甚至还能降低训练和推理的计算成本。出于这个原因,行业前沿模型包括谷歌Gemini-1.5、OpenAI的GPT-4 、马斯克旗下xAI公司的Grok等大模型都使用了 MoE。

在多个权威评测中,元象MoE效果大幅超越多个同类模型,包括国内千亿MoE模型 Skywork-MoE、传统MoE霸主Mixtral-8x22B 以及3140亿参数的MoE开源模型Grok-1-A86B等。

权威测试集评测结果

开源直达

Github link:

https://github.com/xverse-ai/XVERSE-MoE-A36B

模型链接:

https://modelscope.cn/models/xverse/XVERSE-MoE-A36B


落地应用好且省 登顶港台娱乐应用榜

元象此次开源,不仅填补国内空白,也在商业应用上更进一步。

元象基于MoE模型自主研发的AI角色扮演与互动网文APP Saylo,通过逼真的AI角色扮演和有趣的开放剧情,火遍港台,下载量在中国台湾和香港娱乐榜分别位列第一和第三

MoE训练范式具有「更高性能、更低成本」优势,元象在通用预训练基础上,使用海量剧本数据「继续预训练」(Continue Pre-training),并与传统SFT(监督微调)或RLHF(基于人类反馈的强化学习)不同,采用了大规模语料知识注入,让模型既保持了强大的通用语言理解能力,又大幅提升「剧本」这一特定应用领域的表现。

元象大模型落地应用 - Saylo

MoE技术自研与创新

MoE是目前业界最前沿的模型框架,由于技术较新,国内外开源模型或学术研究同步探索。元象在此次升级中围绕效率和效果进行了如下探索:

效率方面

MoE架构与4D拓扑设计:MoE架构的关键特性是由多个专家组成。由于专家之间需要大量的信息交换,通信负担极重。为了解决这个问题,我们采用了4D拓扑架构,平衡了通信、显存和计算资源的分配。这种设计优化了计算节点之间的通信路径,提高了整体计算效率。

专家路由与预丢弃策略:MoE的另一个特点是“专家路由机制”,即需要对不同的输入进行分配,并丢弃一些超出专家计算容量的冗余数据。为此团队设计一套预丢弃策略,减少不必要的计算和传输。同时在计算流程中实现了高效的算子融合,进一步提升模型的训练性能。

通信与计算重叠:由于MoE架构的专家之间需要大量通信,会影响整体计算效率。为此团队设计了“多维度的通信与计算重叠”机制,即在进行参数通信的同时,最大比例并行地执行计算任务,从而减少通信等待时间。


效果方面

专家权重:MoE 中的专家总数为 N ,每个 token 会选择 topK 个专家参与后续的计算,由于专家容量的限制,每个 token 实际选择到的专家数为 M,M<=K<N。被选择到的专家计算完之后,会通过加权平均的方式汇总得到每个 token 的计算结果。这里专家的权重如何设置是一个问题,我们通过对比实验的方式来进行选择。根据对比实验的效果,我们选择实验2的设置进行正式实验。

实验1:权重在 topM 范围内归一化

实验2:权重在 topK 范围内归一化

实验3:权重在 topN 范围内归一化

实验4:权重都为 1


对比实验结果

举例说明,假设N=8,K=4,M=3(2号专家上token被丢弃),不同专家权重的计算方式所得的权重如下图:

数据动态切换:元象以往开源的模型,往往在训练前就锁定了训练数据集,并在整个训练过程中保持不变。这种做法虽然简单,但会受制于初始数据的质量和覆盖面。此次MoE模型的训练借鉴了"课程学习"理念,在训练过程中实现了动态数据切换,在不同阶段多次引入新处理的高质量数据,并动态调整数据采样比例。

这让模型不再被初始语料集所限制,而是能够持续学习新引入的高质量数据,提升了语料覆盖面和泛化能力。同时通过调整采样比例,也有助于平衡不同数据源对模型性能的影响。

不同数据版本的效果曲线图

学习率调度策略(LR Scheduler):在训练过程中动态切换数据集,虽有助于持续引入新知识,但也给模型带来了新的适应挑战。为了确保模型能快速且充分地学习新进数据,团队对学习率调度器进行了优化调整,在每次数据切换时会根据模型收敛状态,相应调整学习率。实验表明,这一策略有效提升了模型在数据切换后的学习速度和整体训练效果。

下图是整个训练过程中 MMLU、HumanEval 两个评测数据集的效果曲线图。

训练过程中MMLU、HumanEval的性能曲线持续拔高

通过设计与优化,元象MoE模型与其Dense模型XVERSE-65B-2相比,训练时间减少30%、推理性能提升100%,模型效果更佳,达到业界领先水平。


点击链接👇直达原文

https://modelscope.cn/models/xverse/XVERSE-MoE-A36B?from=alizishequ__text

相关文章
|
2月前
|
存储 人工智能 前端开发
前端大模型应用笔记(三):Vue3+Antdv+transformers+本地模型实现浏览器端侧增强搜索
本文介绍了一个纯前端实现的增强列表搜索应用,通过使用Transformer模型,实现了更智能的搜索功能,如使用“番茄”可以搜索到“西红柿”。项目基于Vue3和Ant Design Vue,使用了Xenova的bge-base-zh-v1.5模型。文章详细介绍了从环境搭建、数据准备到具体实现的全过程,并展示了实际效果和待改进点。
183 2
|
2月前
|
前端开发 机器人 API
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
566 2
|
1月前
|
人工智能 JSON API
阿里云文档智能 & RAG解决方案:提升AI大模型业务理解与应用
阿里云推出的文档智能 & RAG解决方案,旨在通过先进的文档解析技术和检索增强生成(RAG)方法,显著提升人工智能大模型在业务场景中的应用效果。该方案通过文档智能(Document Mind)技术将非结构化文档内容转换为结构化数据,提取文档的层级树、样式和版面信息,并输出为Markdown和Json格式,为RAG提供语义分块策略。这一过程不仅解决了文档内容解析错误和切块丢失语义信息的问题,还优化了输出LLM友好的Markdown信息。方案的优势在于其多格式支持能力,能够处理包括Office文档、PDF、Html、图片在内的主流文件类型,返回文档的样式、版面信息和层级树结构。
125 2
|
2月前
|
机器学习/深度学习 人工智能 运维
企业内训|LLM大模型在服务器和IT网络运维中的应用-某日企IT运维部门
本课程是为某在华日资企业集团的IT运维部门专门定制开发的企业培训课程,本课程旨在深入探讨大型语言模型(LLM)在服务器及IT网络运维中的应用,结合当前技术趋势与行业需求,帮助学员掌握LLM如何为运维工作赋能。通过系统的理论讲解与实践操作,学员将了解LLM的基本知识、模型架构及其在实际运维场景中的应用,如日志分析、故障诊断、网络安全与性能优化等。
92 2
|
2月前
|
弹性计算 自然语言处理 安全
国内基础大模型的独立性及应用大模型的依赖性
本文探讨了国内基础大模型(如阿里巴巴的通义千问)的独立性及其应用大模型的依赖性。详细分析了这些模型的研发过程、应用场景及技术挑战,包括数据收集、模型架构设计和算力支持等方面。同时,讨论了微调模型、插件式设计和独立部署等不同实现方式对应用大模型的影响。
46 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
【10月更文挑战第31天】2024年,AI大模型在软件开发领域的应用取得了显著进展,从自动化代码生成、智能代码审查到智能化测试,极大地提升了开发效率和代码质量。然而,技术挑战、伦理与安全问题以及模型可解释性仍是亟待解决的关键问题。开发者需不断学习和适应,以充分利用AI的优势。
|
1月前
|
人工智能 自然语言处理 算法
政务培训|LLM大模型在政府/公共卫生系统的应用
本课程是TsingtaoAI公司面向某卫生统计部门的政府职员设计的大模型技术应用课程,旨在系统讲解大语言模型(LLM)的前沿应用及其在政府业务中的实践落地。课程涵盖从LLM基础知识到智能化办公、数据处理、报告生成、智能问答系统构建等多个模块,全面解析大模型在卫生统计数据分析、报告撰写和决策支持等环节中的赋能价值。
65 2
|
2月前
|
机器学习/深度学习 数据采集 自然语言处理
【机器学习】大模型驱动下的医疗诊断应用
摘要: 随着科技的不断发展,机器学习在医疗领域的应用日益广泛。特别是在大模型的驱动下,机器学习为医疗诊断带来了革命性的变化。本文详细探讨了机器学习在医疗诊断中的应用,包括疾病预测、图像识别、基因分析等方面,并结合实际案例进行分析。同时,还展示了部分相关的代码示例,以更好地理解其工作原理。
94 3
【机器学习】大模型驱动下的医疗诊断应用
|
1月前
|
人工智能 分布式计算 数据可视化
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,企业越来越关注大模型的私有化部署。本文详细探讨了硬件资源需求、数据隐私保护、模型可解释性、模型更新和维护等方面的挑战及解决方案,并提供了示例代码,帮助企业高效、安全地实现大模型的内部部署。
121 1
|
1月前
|
人工智能 分布式计算 数据可视化
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,大模型在各领域的应用日益广泛。然而,将其私有化部署到企业内部面临诸多挑战,如硬件资源需求高、数据隐私保护、模型可解释性差、更新维护成本高等。本文探讨了这些挑战,并提出了优化硬件配置、数据加密、可视化工具、自动化更新机制等解决方案,帮助企业顺利实现大模型的私有化部署。
109 1