Python Requests 库中的重试策略实践

简介: 在网络请求中,由于网络波动或服务暂时不可达等原因,请求可能失败。为增强客户端健壮性,自动重试机制变得尤为重要。本文介绍如何在 Python 的 `requests` 库中实现请求自动重试,通过 `urllib3` 的 `Retry` 类配置重试策略,并提供了一个具体示例,展示了如何设置重试次数、状态码集合及异常类型等参数,从而提高系统的可靠性和容错能力。

网络请求由于各种原因可能会失败,例如网络波动、服务暂时不可达等。为了增强客户端的健壮性,实现请求的自动重试是一个常见的做法。在Python中,requests库是处理HTTP请求的标准工具之一。然而,requests本身并不直接提供重试机制,这需要借助urllib3库中的Retry类来实现。

本文将介绍如何在requests中实现请求的自动重试。

1. 重试的必要性

在分布式系统中,服务间的通信可能会由于各种原因失败。而自动重试机制能够提高系统的可靠性和容错能力。合理的重试策略可以减少暂时性故障导致的请求失败。

2. 实现重试的基本原理

requests中实现重试通常需要以下步骤:

  1. 导入必要的模块。
  2. 创建一个HTTPAdapter实例。
  3. HTTPAdapter上配置Retry策略。
  4. 将配置好的HTTPAdapter挂载到Session对象上。
  5. 使用配置了重试的Session对象发送请求。

3. 使用urllib3实现重试

以下是一个具体的示例,展示如何为requests请求添加重试逻辑。

3.1. 导入模块

首先,需要导入requests库和urllib3Retry类。

python

代码解读

复制代码

import requests
from requests.adapters import HTTPAdapter
from urllib3.util import Retry

3.2. 配置重试策略

使用Retry类来定义重试策略。这里可以指定重试次数、状态码集合、异常类型等。

python

代码解读

复制代码

retries = Retry(
    total=5,  # 总重试次数
    backoff_factor=1,  # 指数退避因子
    status_forcelist=[500, 502, 503, 504],  # 指定哪些状态码触发重试
    allowed_methods=frozenset(['GET', 'POST']),  # 允许重试的HTTP方法
)

3.3. 创建HTTPAdapter并配置重试

创建一个HTTPAdapter实例,并设置重试策略。

python

代码解读

复制代码

adapter = HTTPAdapter(max_retries=retries)

3.4. 挂载Adapter到Session

创建Session对象,并为HTTP和HTTPS请求挂载上面创建的adapter

rust

代码解读

复制代码

pythonCopy code
session = requests.Session()
session.mount('http://', adapter)
session.mount('https://', adapter)

3.5. 发送请求

使用配置了重试策略的session对象发送请求。

python

代码解读

复制代码

url = "http://httpbin.org/status/500"
response = session.get(url)

4. 示例:请求一个可能返回错误的服务

以下是一个完整的示例,包括错误处理。

python

代码解读

复制代码

import requests
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry

def request_with_retry(url, max_retries=5, backoff_factor=1, status_forcelist=None):
    if status_forcelist is None:
        status_forcelist = [500, 502, 503, 504]
        
    session = requests.Session()
    retries = Retry(total=max_retries,
                    backoff_factor=backoff_factor,
                    status_forcelist=status_forcelist,
                    method_whitelist=["GET", "POST"])
    adapter = HTTPAdapter(max_retries=retries)
    session.mount('http://', adapter)
    session.mount('https://', adapter)
    
    try:
        response = session.get(url)
        response.raise_for_status()  # 如果请求返回的是4XX, 5XX响应码,将引发HTTPError异常
        return response
    except requests.exceptions.HTTPError as e:
        print(f"HTTP Error: {e}")
    except requests.exceptions.ConnectionError as e:
        print(f"Connection Error: {e}")
    except requests.exceptions.Timeout as e:
        print(f"Timeout Error: {e}")
    except requests.exceptions.RequestException as e:
        print(f"Request Exception: {e}")

url = "http://httpbin.org/status/500"
response = request_with_retry(url)

if response:
    print(response.text)

在这个示例中,如果服务响应500系列错误,或者连接异常,request_with_retry函数将尝试最多五次的请求。

结论

在Python中使用requests库配合urllib3Retry类,可以灵活地实现HTTP请求的自动重试机制。这样可以显著提高应用程序处理网络波动的能力。在微服务、API调用等场景下,这种模式尤为重要。需要注意的是,应当谨慎选择重试的次数和策略,以防止过多的重试导致服务负载过重。


转载来源:https://juejin.cn/post/7296756504913543183

目录
打赏
0
3
3
0
179
分享
相关文章
|
15天前
|
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
37 4
解决Python requests库POST请求参数顺序问题的方法。
总之,想要在Python的requests库里保持POST参数顺序,你要像捋顺头发一样捋顺它们,在向服务器炫耀你那有条不紊的数据前。抓紧手中的 `OrderedDict`与 `json`这两把钥匙,就能向服务端展示你的请求参数就像经过高端配置的快递包裹,里面的商品摆放井井有条,任何时候开箱都是一种享受。
61 10
解析http.client与requests在Python中的性能比较和改进策略。
最后,需要明确的是,这两种库各有其优点和适用场景。`http.client` 更适合于基础且并行的请求,`requests` 则因其易用且强大的功能,更适用于复杂的 HTTP 场景。对于哪种更适合你的应用,可能需要你自己进行实际的测试来确定。
79 10
Python测试报告生成:整合错误截图,重复用例执行策略,调整测试顺序及多断言机制。
如何组织这一切呢?你可以写一本名为“Python测试之道”的动作指南手册,或者创建一个包含测试策略、测试顺序、多断言机制的脚本库。只要你的测试剧本编写得足够独到,你的框架就会像一位执行任务的超级英雄,将任何潜伏于代码深处的错误无情地揪出来展现在光天化日之下。这些整理好的测试结果,不仅有利于团队协作,更像冒险故事中的精彩篇章,带给读者无尽的探索乐趣和深刻的思考。
65 10
|
1月前
|
分析参数顺序对Python requests库进行POST请求的影响。
最后,尽管理论上参数顺序对POST请求没影响,但编写代码时仍然建议遵循一定的顺序和规范,比如URL总是放在第一位,随后是data或json,最后是headers,这样可以提高代码的可读性和维护性。在处理复杂的请求时,一致的参数顺序有助于调试和团队协作。
101 9
分析http.client与requests在Python中的性能差异并优化。
合理地选择 `http.client`和 `requests`库以及在此基础上优化代码,可以帮助你的Python网络编程更加顺利,无论是在性能还是在易用性上。我们通常推荐使用 `requests`库,因为它的易用性。对于需要大量详细控制的任务,或者对性能有严格要求的情况,可以考虑使用 `http.client`库。同时,不断优化并管理员连接、设定合理超时和重试都是提高网络访问效率和稳定性的好方式。
88 19
Python实现时间序列动量策略:波动率标准化让量化交易收益更平稳
时间序列动量策略(TSMOM)是一种基于资产价格趋势的量化交易方法,通过建立多头或空头头寸捕捉市场惯性。然而,传统TSMOM策略因风险敞口不稳定而面临收益波动问题。波动率调整技术通过动态调节头寸规模,维持恒定风险水平,优化了策略表现。本文系统分析了波动率调整TSMOM的原理、实施步骤及优势,强调其在现代量化投资中的重要地位,并探讨关键参数设定与实际应用考量,为投资者提供更平稳的风险管理体验。
111 4
Python实现时间序列动量策略:波动率标准化让量化交易收益更平稳

热门文章

最新文章

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问