AI人工智能大模型的架构演进

简介: 随着深度学习的发展,AI大模型(Large Language Models, LLMs)在自然语言处理、计算机视觉等领域取得了革命性的进展。本文将详细探讨AI大模型的架构演进,包括从Transformer的提出到GPT、BERT、T5等模型的历史演变,并探讨这些模型的技术细节及其在现代人工智能中的核心作用。

随着深度学习的发展,AI大模型(Large Language Models, LLMs)在自然语言处理、计算机视觉等领域取得了革命性的进展。本文将详细探讨AI大模型的架构演进,包括从Transformer的提出到GPT、BERT、T5等模型的历史演变,并探讨这些模型的技术细节及其在现代人工智能中的核心作用。

一、基础模型介绍:Transformer的核心原理

Transformer架构的背景

在Transformer之前,许多自然语言处理(NLP)任务依赖于循环神经网络(RNN)和长短期记忆网络(LSTM)来捕捉序列信息。然而,这些架构在处理长序列时效率较低。为了解决这一问题,Vaswani等人在2017年提出了Transformer架构,它完全摆脱了递归结构,转而使用“自注意力机制”来捕捉序列中的全局依赖关系。

自注意力机制的原理

Transformer架构的核心是自注意力机制(Self-Attention Mechanism),它允许模型在不依赖序列顺序的情况下,灵活地关注输入序列的不同部分。自注意力机制通过计算输入序列中每个词与其他词之间的相关性(注意力权重),生成上下文相关的表示。

自注意力机制的计算过程:

对输入进行线性变换,生成三个矩阵:Query(查询)、Key(键)、Value(值)。

计算每个词的查询向量与其他词的键向量的点积,得到注意力权重。

使用注意力权重对值向量进行加权求和,生成每个词的上下文向量。

Transformer架构的优势

Transformer的优势在于并行化处理能力和灵活的上下文捕捉能力。相比RNN,Transformer在处理长文本时表现得更为高效,因为它可以一次性查看整个输入序列。此外,模型可以通过注意力机制直接捕捉到长距离的依赖关系,不再受限于序列的距离。

示例代码:自注意力机制的简单实现

import torch

import torch.nn.functional as F

 

# 模拟输入词嵌入 (batch_size=1, sequence_length=4, embedding_size=8)

x = torch.rand(1, 4, 8)

 

# 线性变换,生成 Query, Key, Value

query = torch.nn.Linear(8, 8)(x)

key = torch.nn.Linear(8, 8)(x)

value = torch.nn.Linear(8, 8)(x)

 

# 计算注意力权重

attention_scores = torch.matmul(query, key.transpose(-2, -1)) / torch.sqrt(torch.tensor(8.0))

attention_weights = F.softmax(attention_scores, dim=-1)

 

# 加权求和生成上下文向量

context = torch.matmul(attention_weights, value)

 

print("上下文向量:", context)

二、架构升级:从GPT-1到GPT-4的演变

自从Transformer提出后,它被应用在了各种预训练语言模型中,其中最具代表性的便是GPT系列模型。以下是GPT系列的主要技术演变和创新点:

GPT-1:语言模型的预训练

GPT-1 是OpenAI发布的第一个基于Transformer的语言模型,提出了“预训练-微调”的范式。通过在大量未标注的文本数据上进行语言建模预训练,GPT-1能够生成上下文相关的句子。之后,在具体的任务上微调模型,以适应任务需求。

创新点:

使用Transformer中的Decoder部分作为语言模型。

提出语言模型可以通过预训练获得对语言结构的广泛理解。

GPT-2:扩大模型规模

GPT-2大幅扩大了模型参数量,并且展示了大规模预训练模型在生成任务中的强大能力。GPT-2能够根据输入生成完整的段落,甚至可以完成逻辑推理和长文本生成。

创新点:

模型规模扩大至15亿参数,展示了模型规模与性能的正相关关系。

更长的上下文处理能力,提升了生成文本的连贯性。

GPT-3:海量参数与多任务学习

GPT-3是目前较为广泛使用的GPT模型,其参数量达到了1750亿,展示了强大的通用语言处理能力。GPT-3无需微调即可通过提供不同的提示词(prompts)完成各种任务,如翻译、摘要、写作等。

创新点:

大规模参数:1750亿参数极大提升了模型的表达能力。

无需微调,通过少量样例的提示词即可执行多任务学习。

GPT-4:多模态与对话能力增强

GPT-4是最新一代的大语言模型,相比于GPT-3,它不仅具备更强的文本处理能力,还引入了多模态支持,即同时处理文本和图像输入。此外,GPT-4在对话生成方面做了优化,特别是与上下文的连贯性和用户意图的理解。

创新点:

多模态输入:支持处理图像和文本。

更长的上下文记忆,提升对话生成能力。

GPT系列模型的进展总结

随着模型参数量的不断增长,GPT系列在生成文本的质量、上下文理解、推理能力等方面都有了显著提升。同时,模型的多模态能力和多任务学习能力也在逐步加强。

相关文章
|
19天前
|
人工智能 Java Serverless
阿里云函数计算助力AI大模型快速部署
随着人工智能技术的快速发展,AI大模型已经成为企业数字化转型的重要工具。然而,对于许多业务人员、开发者以及企业来说,探索和利用AI大模型仍然面临诸多挑战。业务人员可能缺乏编程技能,难以快速上手AI模型;开发者可能受限于GPU资源,无法高效构建和部署AI应用;企业则希望简化技术门槛,以更低的成本和更高的效率利用AI大模型。
93 12
|
5天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
12月14日,由中国软件行业校园招聘与实习公共服务平台携手魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·湖南大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
|
17天前
|
人工智能 安全 数据安全/隐私保护
文档智能 & RAG让AI大模型更懂业务测评
文档智能 & RAG让AI大模型更懂业务
144 74
|
5天前
|
人工智能 自然语言处理
RWKV-7:RWKV系列开源最新的大模型架构,具有强大的上下文学习能力,超越传统的Attention范式
RWKV-7是RWKV系列的最新大模型架构版本,具有强大的上下文学习能力,超越了传统的attention和linear attention范式。本文详细介绍了RWKV-7的主要功能、技术原理及其在多语言处理、文本生成等领域的应用场景。
61 7
RWKV-7:RWKV系列开源最新的大模型架构,具有强大的上下文学习能力,超越传统的Attention范式
|
5天前
|
机器学习/深度学习 人工智能 智能设计
VisionFM:通用眼科 AI 大模型,具备眼科疾病诊断能力,展现出专家级别的准确性
VisionFM 是一个多模态多任务的视觉基础模型,专为通用眼科人工智能设计。通过预训练大量眼科图像,模型能够处理多种眼科成像模态,并在多种眼科任务中展现出专家级别的智能性和准确性。
32 4
VisionFM:通用眼科 AI 大模型,具备眼科疾病诊断能力,展现出专家级别的准确性
|
5天前
|
机器学习/深度学习 存储 自然语言处理
RWKV-7:极先进的大模型架构,长文本能力极强
RWKV-7 是极先进的最新大模型架构,超越 attention / linear attention 范式,拥有强大的 in-context-learning(上下文学习)能力,可真正持续学习,在保持 100% RNN 的同时,拥有极强的长文本能力。
RWKV-7:极先进的大模型架构,长文本能力极强
|
18天前
|
机器学习/深度学习 人工智能 自然语言处理
GLM-4V-Flash:智谱 AI 免费开放的图像理解大模型 API 接口
智谱AI推出的GLM-4V-Flash是一款专注于图像理解的免费开放大模型,提供API接口支持用户上传图片URL或Base64编码图片获取详细的图像描述。该模型通过深度学习和卷积神经网络技术,简化了图像分析流程,提高了开发效率,适用于内容审核、辅助视障人士、社交媒体、教育和电子商务等多个应用场景。
108 14
GLM-4V-Flash:智谱 AI 免费开放的图像理解大模型 API 接口
|
17天前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
17天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
12月05日,由中国软件行业校园招聘与实习公共服务平台携手阿里魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·电子科技大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
|
5天前
|
人工智能 安全 机器人
OpenAI重拾规则系统,用AI版机器人定律守护大模型安全
在人工智能领域,大语言模型(LLM)展现出强大的语言理解和生成能力,但也带来了安全性和可靠性挑战。OpenAI研究人员提出“规则基于奖励(RBR)”方法,通过明确规则引导LLM行为,确保其符合人类价值观和道德准则。实验显示,RBR方法在安全性与有用性之间取得了良好平衡,F1分数达97.1。然而,规则制定和维护复杂,且难以完全捕捉语言的多样性。论文:https://arxiv.org/pdf/2411.01111。
39 13