AI人工智能大模型的架构演进

简介: 随着深度学习的发展,AI大模型(Large Language Models, LLMs)在自然语言处理、计算机视觉等领域取得了革命性的进展。本文将详细探讨AI大模型的架构演进,包括从Transformer的提出到GPT、BERT、T5等模型的历史演变,并探讨这些模型的技术细节及其在现代人工智能中的核心作用。

随着深度学习的发展,AI大模型(Large Language Models, LLMs)在自然语言处理、计算机视觉等领域取得了革命性的进展。本文将详细探讨AI大模型的架构演进,包括从Transformer的提出到GPT、BERT、T5等模型的历史演变,并探讨这些模型的技术细节及其在现代人工智能中的核心作用。

一、基础模型介绍:Transformer的核心原理

Transformer架构的背景

在Transformer之前,许多自然语言处理(NLP)任务依赖于循环神经网络(RNN)和长短期记忆网络(LSTM)来捕捉序列信息。然而,这些架构在处理长序列时效率较低。为了解决这一问题,Vaswani等人在2017年提出了Transformer架构,它完全摆脱了递归结构,转而使用“自注意力机制”来捕捉序列中的全局依赖关系。

自注意力机制的原理

Transformer架构的核心是自注意力机制(Self-Attention Mechanism),它允许模型在不依赖序列顺序的情况下,灵活地关注输入序列的不同部分。自注意力机制通过计算输入序列中每个词与其他词之间的相关性(注意力权重),生成上下文相关的表示。

自注意力机制的计算过程:

对输入进行线性变换,生成三个矩阵:Query(查询)、Key(键)、Value(值)。

计算每个词的查询向量与其他词的键向量的点积,得到注意力权重。

使用注意力权重对值向量进行加权求和,生成每个词的上下文向量。

Transformer架构的优势

Transformer的优势在于并行化处理能力和灵活的上下文捕捉能力。相比RNN,Transformer在处理长文本时表现得更为高效,因为它可以一次性查看整个输入序列。此外,模型可以通过注意力机制直接捕捉到长距离的依赖关系,不再受限于序列的距离。

示例代码:自注意力机制的简单实现

import torch

import torch.nn.functional as F

 

# 模拟输入词嵌入 (batch_size=1, sequence_length=4, embedding_size=8)

x = torch.rand(1, 4, 8)

 

# 线性变换,生成 Query, Key, Value

query = torch.nn.Linear(8, 8)(x)

key = torch.nn.Linear(8, 8)(x)

value = torch.nn.Linear(8, 8)(x)

 

# 计算注意力权重

attention_scores = torch.matmul(query, key.transpose(-2, -1)) / torch.sqrt(torch.tensor(8.0))

attention_weights = F.softmax(attention_scores, dim=-1)

 

# 加权求和生成上下文向量

context = torch.matmul(attention_weights, value)

 

print("上下文向量:", context)

二、架构升级:从GPT-1到GPT-4的演变

自从Transformer提出后,它被应用在了各种预训练语言模型中,其中最具代表性的便是GPT系列模型。以下是GPT系列的主要技术演变和创新点:

GPT-1:语言模型的预训练

GPT-1 是OpenAI发布的第一个基于Transformer的语言模型,提出了“预训练-微调”的范式。通过在大量未标注的文本数据上进行语言建模预训练,GPT-1能够生成上下文相关的句子。之后,在具体的任务上微调模型,以适应任务需求。

创新点:

使用Transformer中的Decoder部分作为语言模型。

提出语言模型可以通过预训练获得对语言结构的广泛理解。

GPT-2:扩大模型规模

GPT-2大幅扩大了模型参数量,并且展示了大规模预训练模型在生成任务中的强大能力。GPT-2能够根据输入生成完整的段落,甚至可以完成逻辑推理和长文本生成。

创新点:

模型规模扩大至15亿参数,展示了模型规模与性能的正相关关系。

更长的上下文处理能力,提升了生成文本的连贯性。

GPT-3:海量参数与多任务学习

GPT-3是目前较为广泛使用的GPT模型,其参数量达到了1750亿,展示了强大的通用语言处理能力。GPT-3无需微调即可通过提供不同的提示词(prompts)完成各种任务,如翻译、摘要、写作等。

创新点:

大规模参数:1750亿参数极大提升了模型的表达能力。

无需微调,通过少量样例的提示词即可执行多任务学习。

GPT-4:多模态与对话能力增强

GPT-4是最新一代的大语言模型,相比于GPT-3,它不仅具备更强的文本处理能力,还引入了多模态支持,即同时处理文本和图像输入。此外,GPT-4在对话生成方面做了优化,特别是与上下文的连贯性和用户意图的理解。

创新点:

多模态输入:支持处理图像和文本。

更长的上下文记忆,提升对话生成能力。

GPT系列模型的进展总结

随着模型参数量的不断增长,GPT系列在生成文本的质量、上下文理解、推理能力等方面都有了显著提升。同时,模型的多模态能力和多任务学习能力也在逐步加强。

目录
打赏
0
6
8
1
395
分享
相关文章
比亚迪座舱接入通义大模型,未来将联合打造更多AI智能座舱场景
比亚迪与阿里云深度合作,将通义大模型应用于智能座舱和营销服务。通过通义万相,腾势推出“AI壁纸”功能;借助通义星尘,实现“心理伴聊”等情感陪伴场景。阿里云Mobile-Agent智能体落地比亚迪座舱,支持复杂语音操作,如查询淘宝物流、订火车票等。该方案基于全视觉解决技术,具有强泛化能力,未来双方将持续拓展更多AI应用。
通义OmniAudio大模型,让 AI 看懂 360° 视频,并“听”出对应的空间音频
OmniAudio 是一项突破性的空间音频生成技术,能够直接从 360° 视频生成 FOA(First-order Ambisonics)空间音频,为虚拟现实和沉浸式娱乐带来全新可能。通过自监督 coarse-to-fine 预训练和双分支视频表示微调,OmniAudio 在非空间音频质量和空间定位准确性上显著优于现有方法。项目包含超过 103,000 个视频片段的 Sphere360 数据集,支持高质量的模型训练与评估。代码、数据及论文均已开源,助力沉浸式体验技术发展。
AI IDE正式上线!通义灵码开箱即用
通义灵码AI IDE现已正式上线,用户可免费下载使用。作为AI原生开发环境工具,它深度适配千问3大模型,集成通义灵码插件能力,支持编程智能体、行间建议预测和行间会话等功能。其核心亮点包括:支持最强开源模型千问3,具备MCP工具调用能力;开箱即用的智能编码助手;自带编程智能体模式,端到端完成编码任务;长期记忆、NES行间预测及Inline Chat功能,大幅提升编程效率。目前,通义灵码插件下载量超1500万,生成代码超30亿行,广泛应用于企业开发场景。
AI IDE正式上线!通义灵码开箱即用
智能体(AI Agent)开发实战之【LangChain】(二)结合大模型基于RAG实现本地知识库问答
智能体(AI Agent)开发实战之【LangChain】(二)结合大模型基于RAG实现本地知识库问答
AI时代如何让大模型「读懂」企业数据?——从“单一问数”到“复杂决策”的智能跃迁
从早期的传统BI,到敏捷BI,再到智能BI,BI工具正逐步进化为具备类人推理能力的数字助手。Gartner预测,到2025年,增强型消费者体验将首次推动增强型BI(ABI)能力的采用率超过50%,这将深刻重塑企业的业务流程与决策模式,“人人都是数据消费者”的时代正加速到来。
2025年颠覆闭源大模型?MonkeyOCR:这款开源AI文档解析模型,精度更高,速度更快!
还在依赖昂贵且慢的闭源OCR工具?华中科技大学开源的MonkeyOCR文档解析模型,以其超越GPT4o的精度和更快的推理速度,在单机单卡(3090)上即可部署,正颠覆业界认知。本文将深入解析其设计哲学、核心突破——大规模自建数据集,并分享实测体验与避坑指南。
327 0
AI生成内容为什么有"AI味"?各大模型如何破局
本文深入探讨了AI生成内容中普遍存在的“AI味”现象,从技术角度剖析其成因及解决方法。“AI味”主要表现为语言模式同质化、情感表达平淡、创新性不足和上下文理解局限。这些特征源于训练数据偏差、损失函数设计及安全性约束等技术因素。各大厂商如OpenAI、Anthropic、Google以及国内的百度、阿里云等,正通过多样性训练、Constitutional AI、多模态融合等方法应对这一挑战。未来,对抗性训练、个性化定制、情感建模等技术创新将进一步减少“AI味”。尽管“AI味”反映了当前技术局限,但随着进步,AI生成内容将更自然,同时引发关于人类创作与AI生成界限的哲学思考。
81 0
智能体(AI Agent)开发实战之【LangChain】(一)接入大模型输出结果
LangChain 是一个开源框架,专为构建与大语言模型(LLMs)相关的应用设计。通过集成多个 API、数据源和工具,助力开发者高效构建智能应用。本文介绍了 LangChain 的环境准备(如安装 LangChain、OpenAI 及国内 DeepSeek 等库)、代码实现(以国内开源大模型 Qwen 为例,展示接入及输出结果的全流程),以及核心参数配置说明。LangChain 的灵活性和强大功能使其成为开发对话式智能应用的理想选择。
网络安全厂商F5推出AI Gateway,化解大模型应用风险
网络安全厂商F5推出AI Gateway,化解大模型应用风险
53 0

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问