训练集、测试集与验证集:机器学习模型评估的基石

简介: 在机器学习中,数据集通常被划分为训练集、验证集和测试集,以评估模型性能并调整参数。训练集用于拟合模型,验证集用于调整超参数和防止过拟合,测试集则用于评估最终模型性能。本文详细介绍了这三个集合的作用,并通过代码示例展示了如何进行数据集的划分。合理的划分有助于提升模型的泛化能力。

在机器学习中,为了评估模型的性能,我们通常会将数据集划分为训练集(Training Set)、验证集(Validation Set)和测试集(Test Set)。这种划分有助于我们更好地理解模型在不同数据上的表现,并据此调整模型参数,避免过拟合和欠拟合。本文将详细介绍这三个集合的作用,并通过代码演示如何进行数据集的划分。

目录

一、训练集、验证集与测试集的作用

二、为什么需要这样的划分

三、如何划分数据集

四、注意事项

五、总结


image.gif 编辑

一、训练集、验证集与测试集的作用

image.gif 编辑

  1. 训练集(Training Set)
  • 用于训练模型,即调整模型的参数以拟合数据。
  • 通常占整个数据集的70%左右。
  1. 验证集(Validation Set)
  • 用于在训练过程中评估模型的性能,帮助调整超参数和防止过拟合。
  • 通常占整个数据集的15%左右。
  1. 测试集(Test Set)
  • 用于评估训练完成的模型在未见过的数据上的性能。
  • 通常占整个数据集的15%左右。

二、为什么需要这样的划分

image.gif 编辑

  • 通过将数据集划分为不同的部分,我们可以更准确地评估模型的泛化能力,即模型对未见过的数据的预测能力。
  • 训练集用于训练模型,验证集用于调整模型参数和超参数,测试集则用于评估模型的最终性能。

三、如何划分数据集

在Python中,我们可以使用sklearn.model_selection库中的train_test_split函数来划分数据集。以下是一个简单的示例:

from sklearn.model_selection import train_test_split  
import numpy as np  
  
# 假设 X 是特征数据,y 是标签数据  
X, y = np.arange(10).reshape((5, 2)), range(5)  
  
# 首先将数据集划分为训练集和测试集,测试集大小为20%  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  
  
# 然后将训练集进一步划分为实际的训练集和验证集,验证集大小为训练集的20%  
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=42)  
  
print("训练集特征:", X_train)  
print("训练集标签:", y_train)  
print("验证集特征:", X_val)  
print("验证集标签:", y_val)  
print("测试集特征:", X_test)  
print("测试集标签:", y_test)

image.gif

四、注意事项

  • 数据集的划分应该具有代表性,即各集合中的数据分布应该与原始数据集相似。
  • 为了避免数据泄露,验证集和测试集的数据在训练过程中应该是不可见的。
  • 可以使用交叉验证(Cross-validation)等技术来更准确地评估模型性能。

五、总结

训练集、验证集和测试集的合理划分是机器学习模型评估的关键步骤。通过这三个集合,我们可以更全面地了解模型的性能,并据此进行优化。在实际应用中,我们应该根据具体问题和数据集的特点来选择合适的划分比例和方法。

目录
打赏
0
11
11
0
134
分享
相关文章
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
MT-MegatronLM:国产训练框架逆袭!三合一并行+FP8黑科技,大模型训练效率暴涨200%
MT-MegatronLM 是摩尔线程推出的面向全功能 GPU 的开源混合并行训练框架,支持多种模型架构和高效混合并行训练,显著提升 GPU 集群的算力利用率。
79 18
DistilQwen2.5蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
DistilQwen2.5 是阿里云人工智能平台 PAI 推出的全新蒸馏大语言模型系列。通过黑盒化和白盒化蒸馏结合的自研蒸馏链路,DistilQwen2.5各个尺寸的模型在多个基准测试数据集上比原始 Qwen2.5 模型有明显效果提升。这一系列模型在移动设备、边缘计算等资源受限的环境中具有更高的性能,在较小参数规模下,显著降低了所需的计算资源和推理时长。阿里云的人工智能平台 PAI,作为一站式的机器学习和深度学习平台,对 DistilQwen2.5 模型系列提供了全面的技术支持。本文详细介绍在 PAI 平台使用 DistilQwen2.5 蒸馏小模型的全链路最佳实践。
使用崖山YMP 迁移 Oracle/MySQL 至YashanDB 23.2 验证测试
这篇文章是作者尚雷关于使用崖山YMP迁移Oracle/MySQL至YashanDB 23.2的验证测试分享。介绍了YMP的产品信息,包括架构、版本支持等,还详细阐述了外置库部署、YMP部署、访问YMP、数据源管理、任务管理(创建任务、迁移配置、离线迁移、校验初始化、一致性校验)及MySQL迁移的全过程。
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
Diff-Instruct 是一种从预训练扩散模型中迁移知识的通用框架,通过最小化积分Kullback-Leibler散度,指导其他生成模型的训练,提升生成性能。
108 11
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
|
2月前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
107 6
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
犬类癌症检测(CANDiD)研究:使用独立测试集对1000多只犬进行基于高通量测序的多癌种早期检测"液体活检"血液测试的临床验证
这项研究首次在大规模独立测试集上验证了基于NGS的液体活检在犬类多癌种检测中的应用。该方法具有很高的特异性,可以作为一种新的无创癌症筛查和辅助诊断工具。通过早期发现癌症,有望改善犬类癌症的诊断和管理模式。
81 12
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法。本文介绍 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,同时提供 Python 实现示例,强调其在确保项目性能和用户体验方面的关键作用。
96 6

热门文章

最新文章