数据结构基础详解(C语言): 二叉树的遍历_线索二叉树_树的存储结构_树与森林详解

简介: 本文从二叉树遍历入手,详细介绍了先序、中序和后序遍历方法,并探讨了如何构建二叉树及线索二叉树的概念。接着,文章讲解了树和森林的存储结构,特别是如何将树与森林转换为二叉树形式,以便利用二叉树的遍历方法。最后,讨论了树和森林的遍历算法,包括先根、后根和层次遍历。通过这些内容,读者可以全面了解二叉树及其相关概念。

本文逻辑:
本文由二叉树的遍历起手,讲解了二叉树的三种遍历方式,以及如何构造一颗二叉树,并在此基础上,扩展了更好的二叉树-线索二叉树。树和森林的存储结构讲解中,重点就是将树与森林转换为二叉树,这样二叉树的手段就能使用到树与森林当中。最后,讲解了二叉树与森林的遍历。

1.二叉树的遍历

什么是遍历
遍历:按照某种次序把所有的结点都访问一遍
什么是层次遍历:基于树的层次特性确定的次序规则(从上到下,从左到右的遍历)

二叉树的递归特性:
:one: 要么是个空二叉树
:two: 要么就是由根节点+左子树+右子树 组成的二叉树

1.1 二叉树的前,中,后序遍历

二叉树有三种遍历的情形
:one:先序遍历:根左右
:two:中序遍历:左根右
:three: 后序遍历:左右根

image.png

二叉树的遍历(手算)

给你一个二叉树,写出他的先序遍历,中序遍历,后序遍历,属于简单题
给出一个手算技巧,留出空,根据遍历规则,补全

1.2 二叉树的层次遍历

  • 算法思想
    :one: 初始化一个辅助队列
    :two: 根结点入队
    :three: 若队列为空,则头结点出队。将其左孩子,右孩子插入队尾(如果有的话
    :four: 重复:three:直至队列为空

1.3构造二叉树

直接说结论:
想要构造一个二叉树,必须知道的两种遍历序列,其中还必须有中序遍历。
也就是中序遍历+(前序遍历or后序遍历or层次遍历)

线索二叉树引入:

在二叉树的基础上,我们能否从一个指定结点开始中序遍历?
如何找到指定结点p在中序遍历序列中的前驱
如何找到p的中序后继
解决思路:
两个指针+目标结点p
从根节点出发,重新进行一次中序遍历,指针q记录当前访问的结点,指针pre记录上一个被访问的结点
当q==p时,pre为前驱
当pre==p时,q为后继。
通过这种方法解决还是太麻烦了,所以引入线索二叉树

2.线索二叉树

2.1 以中序线索二叉树为例,讲解线索二叉树

n个结点的二叉树,有n+1个空链域,用来构成线索,记录前驱和后继

  • 前驱线索(由左孩子指针充当)
  • 后继线索(由右孩子指针充当)
    image.png

三种线索二叉树的对比
image.png

2.2 二叉树的线索化

为了区分指针是指向了孩子还是指向了前驱/后继
我们还需要两个标志 一个是ltag,一个是rtag,记录当前结点是否记录了线索

  • ltag=0,lchild指向左孩子
  • ltag=1,lchild指向前驱
  • rtag=0,lchild指向右孩子
  • rtag=1,lchild指向后继

一棵二叉树的中序线索化:
1.首先取得二叉树的中序序列,
假设是A~4~,A~2~,A~5~,A~1~,A~6~,A~3~
2.A~4~的前驱指针指向NULL,A~3~的后继指针指向NULL
3.遍历一遍树,如果左指针为空就指向前驱,如果右指针为空就指向后继。

2.3 线索二叉树中找前驱后继

2.3.1 中序线索二叉树寻找前驱后继(重点)

中序线索二叉树找中序后继

明确p点肯定有右孩子,没有右孩子的话,中序后继直接为NULL了
根据左根右,他的后继是右,也就是右子树,右孩子如果还有孩子,那继续左根右,即首先访问最左的点
综上所述,中序后继=p的右子树中最左下结点。

中序线索二叉树找中序前驱
有了之前的分析过程,很好推出,中序前驱=p的左子树中最右下结点

2.3.2 先序线索二叉树寻找前驱后继(了解)

先序线索二叉树找先序前驱
无法实现,除非土办法遍历或者,使用三叉链表(能找到p结点的父结点)
下面假设可以找到p的父节点.
image.png

先序线索二叉树找先序后继
先序后继就是最左的节点

2.3.3 后序线索二叉树寻找前驱后继(了解)

后序线索二叉树寻找后序前驱
p肯定有左孩子,若p有右孩子,则后序前驱是他的右孩子,没有就是左孩子

后序线索二叉树寻找后序后继
无法实现,除非土办法遍历或者,使用三叉链表(能找到p结点的父结点)
下面假设可以找到p的父节点.

image.png

3.树的存储结构

  • 双亲表示法(顺序存储)
  • 孩子表示法(顺序+链式存储)
  • :star:孩子兄弟表示法(链式存储)

3.1 双亲表示法(顺序存储)

核心:每个结点中保存指向双亲的指针
image.png

增删改查思路:
增加一个孩子,直接在顺序的数组中增加即可
删除一个孩子,会让某一块为空,可以让最后一个存储的孩子,覆盖上去,提高效率
查找的话:想要找到某个结点的孩子,比较麻烦,要全部遍历一遍树

优缺点:
优点:查指定结点的双亲很方便。
缺点:查指定结点的孩子只能从头遍历。

3.2 孩子表示法(顺序+链式存储)

核心:结点顺序存储,每一个结点的孩子,用链式存储
在这里插入图片描述

3.3 孩子兄弟表示法(链式存储)->重点

核心目的:将逻辑结构树能够转换为存储结构是二叉树的形式储存,这样我们就可以用处理二叉树的手段,处理它。

核心思路:左指针指向第一个孩子(最左边的孩子),右指针指向他的右兄弟

我们可以 轻松的将一个树改写成这种孩子兄弟表示法的形式
在这里插入图片描述

3.4 森林和二叉树的转换

在3.3的基础上,我们不难理解森林和二叉树的转换,就是按照孩子兄弟表示法

4.树的遍历

  • 树的先根遍历

4.1 树的先根遍历(先根,先根,就是先遍历根,再遍历子树)

核心:先根遍历。若树非空,先访问根结点,再依次对每棵子树进行先根遍历。

与二叉树遍历对比:==树的先根遍历序列与二叉树的先序遍历相同==

4.2 树的后根遍历

核心:后根遍历。若树非空,先依次对每棵子树进行后根遍历,最后访问根结点
与二叉树遍历对比:==树的后根遍历序列与二叉树的中序遍历相同==

4.3 树的层次遍历

跟二叉树的层次遍历一样,用队列实现

5.森林的遍历

森林是m棵互不相交的树的集合。每棵树去掉根节点,其各个子树又组成森林。

5.1 先序遍历森林

若森林为非空,则按如下规则进行遍历;
访问森林中第一棵树的根结点。
先序遍历第一棵树中根结点的子树森林
先序遍历除去第一棵之后剩余的树构成的森林。

与==树的遍历==对比:==效果等同于依次对各个树进行先根遍历==

5.2 中序遍历森林

若森林为非空,则按如下规则进行遍历
中序遍历森林中第一棵树的根结点的子树森林
访问第一棵树的根结点。
中序遍历除去第一棵树之后剩余的树构成的森林。

与==树的遍历==对比:==效果等同于依次对各个树进行后根遍历==

相关文章
|
19天前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
14 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
19天前
|
存储 算法 搜索推荐
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
这篇文章主要介绍了顺序存储二叉树和线索化二叉树的概念、特点、实现方式以及应用场景。
15 0
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
|
19天前
|
存储 算法
探索数据结构:分支的世界之二叉树与堆
探索数据结构:分支的世界之二叉树与堆
|
27天前
|
存储 算法 搜索推荐
探索常见数据结构:数组、链表、栈、队列、树和图
探索常见数据结构:数组、链表、栈、队列、树和图
84 64
|
19天前
|
算法 程序员 索引
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
栈的基本概念、应用场景以及如何使用数组和单链表模拟栈,并展示了如何利用栈和中缀表达式实现一个综合计算器。
18 1
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
|
19天前
初步认识栈和队列
初步认识栈和队列
47 10
|
13天前
数据结构(栈与列队)
数据结构(栈与列队)
15 1
|
20天前
|
算法
数据结构与算法二:栈、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式
这篇文章讲解了栈的基本概念及其应用,并详细介绍了中缀表达式转换为后缀表达式的算法和实现步骤。
34 3
|
18天前
|
存储 JavaScript 前端开发
为什么基础数据类型存放在栈中,而引用数据类型存放在堆中?
为什么基础数据类型存放在栈中,而引用数据类型存放在堆中?
54 1
|
21天前
|
存储 安全 Java
【用Java学习数据结构系列】探索栈和队列的无尽秘密
【用Java学习数据结构系列】探索栈和队列的无尽秘密
26 2