Spring Cloud全解析:负载均衡算法

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: 本文介绍了负载均衡的两种方式:集中式负载均衡和进程内负载均衡,以及常见的负载均衡算法,包括轮询、随机、源地址哈希、加权轮询、加权随机和最小连接数等方法,帮助读者更好地理解和应用负载均衡技术。

负载均衡算法

集中式负载均衡

在服务的消费方和提供方之间使用独立的LB设施(可以是硬件,如F5,也可以是软件,如Nginx),由该设施负责把访问请求通过某种策略转发至服务的提供方

进程内负载均衡

将LB逻辑集成到消费方,消费方从服务注册中心获知有哪些地址可用,然后自己再从这些地址中选择出一个合适的服务器,如ribbon

算法

常见的负载均衡算法有以下几种

轮询(Round Robin)法,轮询很容易理解,将请求按顺序轮流的分配到后端服务器上,它均衡的对待后端每一台服务器,而不关心服务器实际的连接数和当前的系统负载。

随机(Random)法,通过系统随机函数,根据后端服务器列表的大小值,来随机选取其中一台进行访问,由概率统计的理论可以得知,随着调用量的增大,其实际效果越来越接近于平均分配流量到每一台后端服务器,也就是轮询的效果。

源地址哈希(Hash)法,源地址哈希的思想是获取客户端访问的ip地址值,通过哈希函数计算得到一个数值,用该数值对服务器列表的大小进行取模运算,得到的结果便是要访问的服务器的序号。采用哈希法进行负载均衡,同一ip地址的客户端,当后端服务器列表不变的时候,它每次都会被映射到同一台后端服务器进行访问。

加权轮询(Weight Round Robin)法,不同的后端服务器,可能机器的配置和系统当前的负载并不相同,因此他们抗压能力也不尽相同,给配置高负载低的机器配置更高的权重,让其处理更多的请求,而低配置负载高的机器,则给其分配较低的权重,降低其系统负载,加权轮询能很好的处理这一问题,并将请求顺序且按照权重分配到后端

加权随机(Weight Random)法,与加权轮询法类似,加权随机法也根据后端服务器不同的配置和负载情况,配置不同的权重,不同的是,其实按照权重来随机选取服务器,而非顺序。

最小连接数(Least Connections)法,最小连接数算法比较灵活和智能,由于后端服务器配置不尽相同,对于请求的处理有快有慢,它正是根据后端服务器当前的连接情况,动态的选取其中一台当前积压连接数最少的服务器,来处理当前请求,尽可能的提高后端服务器的利用效率,将负载合理的分流到每一台机器。


转载来源:https://juejin.cn/post/7410624782419492918

相关文章
|
18天前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
36 0
|
11天前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
30 3
|
4天前
|
搜索推荐 Java Spring
Spring Filter深度解析
【10月更文挑战第21天】Spring Filter 是 Spring 框架中非常重要的一部分,它为请求处理提供了灵活的控制和扩展机制。通过合理配置和使用 Filter,可以实现各种个性化的功能,提升应用的安全性、可靠性和性能。还可以结合具体的代码示例和实际应用案例,进一步深入探讨 Spring Filter 的具体应用和优化技巧,使对它的理解更加全面和深入。
|
13天前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
18天前
|
Java Spring
Spring底层架构源码解析(三)
Spring底层架构源码解析(三)
|
18天前
|
XML Java 数据格式
Spring底层架构源码解析(二)
Spring底层架构源码解析(二)
|
19天前
|
机器学习/深度学习 算法 PyTorch
Pytorch-RMSprop算法解析
关注B站【肆十二】,观看更多实战教学视频。本期介绍深度学习中的RMSprop优化算法,通过调整每个参数的学习率来优化模型训练。示例代码使用PyTorch实现,详细解析了RMSprop的参数及其作用。适合初学者了解和实践。
27 1
|
26天前
|
搜索推荐 Shell
解析排序算法:十大排序方法的工作原理与性能比较
解析排序算法:十大排序方法的工作原理与性能比较
38 9
|
22天前
|
人工智能 缓存 Java
深入解析Spring AI框架:在Java应用中实现智能化交互的关键
【10月更文挑战第12天】Spring AI 是 Spring 框架家族的新成员,旨在满足 Java 应用程序对人工智能集成的需求。它支持自然语言处理、图像识别等多种 AI 技术,并提供与云服务(如 OpenAI、Azure Cognitive Services)及本地模型的无缝集成。通过简单的配置和编码,开发者可轻松实现 AI 功能,同时应对模型切换、数据安全及性能优化等挑战。
|
29天前
|
Java Spring 容器
Spring IOC、AOP与事务管理底层原理及源码解析
【10月更文挑战第1天】Spring框架以其强大的控制反转(IOC)和面向切面编程(AOP)功能,成为Java企业级开发中的首选框架。本文将深入探讨Spring IOC和AOP的底层原理,并通过源码解析来揭示其实现机制。同时,我们还将探讨Spring事务管理的核心原理,并给出相应的源码示例。
108 9

推荐镜像

更多