群智能算法:【WOA】鲸鱼优化算法详细解读

本文涉及的产品
应用实时监控服务-应用监控,每月50GB免费额度
函数计算FC,每月15万CU 3个月
应用实时监控服务-用户体验监控,每月100OCU免费额度
简介: 本文详细解读了鲸鱼优化算法(WOA),这是一种受鲸鱼捕食行为启发的新兴群体智能优化算法,具有强大的全局搜索能力和快速收敛速度。文章分为五个部分,分别介绍了引言、算法原理、主要步骤、特点及Python代码实现。通过模拟鲸鱼的捕食行为,该算法能够在复杂的优化问题中找到全局最优解。

鲸鱼优化算法的详细解读

目录

一、引言

二、鲸鱼优化算法的原理

三、鲸鱼优化算法的主要步骤

四、鲸鱼优化算法的特点

五、Python代码实现


一、引言

在当今的优化问题中,随着问题复杂性的增加,传统的优化方法往往难以找到全局最优解。近年来,基于自然界动物行为的优化算法越来越受到研究者的关注。鲸鱼优化算法(Whale Optimization Algorithm, WOA)便是其中一种新兴的群体智能优化算法,它模拟了鲸鱼群体的捕食行为,具有较强的全局搜索能力和较快的收敛速度。本文将详细解读鲸鱼优化算法的原理、步骤,并通过Python代码展示其实现过程。

二、鲸鱼优化算法的原理

鲸鱼优化算法是由Mirjalili在2016年提出的一种全局优化算法,它受到鲸鱼捕食行为的启发。鲸鱼在捕食过程中,会采取包围猎物、狩猎和搜索猎物的行为。鲸鱼优化算法正是基于这些行为,通过模拟鲸鱼的群体活动来寻找问题的最优解。

image.gif 编辑

三、鲸鱼优化算法的主要步骤

  1. 初始化

在算法开始时,需要为每个鲸鱼设定一个初始位置,并生成初始种群。这些鲸鱼个体代表了解空间中的潜在最优解。设种群大小为N,解空间的维度为D,则每个鲸鱼可以表示为一个D维的向量。

  1. 包围猎物

鲸鱼会向最优位置的鲸鱼或随机选择的鲸鱼靠近,这个过程可以模拟鲸鱼包围猎物的行为。位置更新公式如下:

X(t+1)=X(t)+r⋅(X∗−X(t))

其中,X(t)表示当前鲸鱼的位置,X∗表示最优鲸鱼的位置,r是一个介于[-1,1]之间的随机数。

  1. 狩猎行为

在狩猎阶段,鲸鱼会根据当前最优解的位置和其自身的位置进行螺旋式搜索。位置更新公式为:

X(t+1)=X∗−A⋅D1⋅eb⋅l⋅cos(2πl)

其中,A和C是系数向量,D1=∣C⋅X∗−X(t)∣表示当前鲸鱼与最优鲸鱼之间的距离,b是一个常数,用于控制螺旋的形状,l是在[-1,1]之间的随机数。

  1. 搜索猎物

当鲸鱼个体离最优解较远时,它们会在整个解空间进行随机搜索。位置更新公式如下:

X(t+1)=Xrand−A⋅D2⋅eb⋅l⋅cos(2πl)

其中,Xrand是随机选择的鲸鱼位置,D2=∣C⋅Xrand−X(t)∣表示当前鲸鱼与随机鲸鱼之间的距离。

  1. 评估与更新

每当鲸鱼移动后,都会计算其适应度值。如果新的位置具有更好的适应度值,则更新当前最优解。

  1. 迭代与终止

鲸鱼优化算法会进行多次迭代,直到满足终止条件(如达到最大迭代次数或找到满足精度要求的最优解)为止。

四、鲸鱼优化算法的特点

  1. 全局搜索能力强:通过模拟鲸鱼的捕食行为,算法能够在整个解空间中进行有效的搜索。
  2. 收敛速度快:鲸鱼优化算法通过包围猎物、狩猎和搜索猎物的行为,能够迅速逼近全局最优解。
  3. 对初始值不敏感:由于算法采用群体智能的思想,因此不依赖于初始值的选取。

五、Python代码实现

以下是一个目标函数(以Rosenbrock函数为例)示例,展示了鲸鱼优化算法的实现过程:

import numpy as np  
  
# Rosenbrock函数作为目标函数  
def rosenbrock(x):  
    return 100 * (x[1] - x[0] ** 2) ** 2 + (1 - x[0]) ** 2  
  
# 鲸鱼优化算法实现  
def whale_optimization_algorithm(fitness_func, lb, ub, dimension, population_size=30, iterations=1000):  
    # 初始化鲸鱼种群  
    whales = np.random.uniform(lb, ub, (population_size, dimension))  
    fitness = np.apply_along_axis(fitness_func, 1, whales)  
    best_whale_index = np.argmin(fitness)  
    best_whale_position = whales[best_whale_index]  
    best_fitness = fitness[best_whale_index]  
      
    a, b, l = 2, 1, (a - 1) / iterations  # 初始化参数  
      
    for t in range(iterations):  
        for i in range(population_size):  
            r1 = np.random.random()  # 随机数r1  
            r2 = np.random.random()  # 随机数r2  
            A = 2 * a * r1 - a  # 线性减小a的值  
            C = 2 * r2  
            p = np.random.random()  # 随机数p  
            b1 = 1  # 定义形状参数b  
            l = (a - 1) * np.exp(-b1 * t / iterations)  # 螺旋形状参数  
              
            if p < 0.5:  
                if abs(A) >= 1:  
                    rand_leader_index = np.random.randint(0, population_size)  
                    X_rand = whales[rand_leader_index]  
                    D_X_rand = abs(C * X_rand - whales[i])  
                    whales[i] = X_rand - A * D_X_rand  
                else:  
                    D_1 = abs(C * best_whale_position - whales[i])  
                    whales[i] = best_whale_position - A * D_1  
            else:  
                D_2 = abs(best_whale_position - whales[i])  
                whales[i] = best_whale_position + D_2 * np.exp(b * l) * np.cos(2 * np.pi * l)  
                  
            # 更新适应度值  
            fitness[i] = fitness_func(whales[i])  
            if fitness[i] < best_fitness:  
                best_fitness = fitness[i]  
                best_whale_position = whales[i]  
                  
        a -= l  # 更新a值  
          
        # 打印最优解信息(可选)  
        if t % 100 == 0:  
            print(f'Iteration {t}, Best Fitness: {best_fitness}, Best Position: {best_whale_position}')  
              
    return best_whale_position, best_fitness  
  
# 设置参数并运行算法  
lb = -5  # 变量下界  
ub = 10  # 变量上界  
dimension = 2  # 变量维度  
population_size = 30  # 种群大小  
iterations = 1000  # 迭代次数  
best_position, best_fitness = whale_optimization_algorithm(rosenbrock, lb, ub, dimension, population_size, iterations)  
print(f'Optimal solution: {best_position}, Fitness: {best_fitness}')

image.gif

上述代码实现了鲸鱼优化算法,并使用Rosenbrock函数作为目标函数进行优化。可以运行这段代码来查看算法如何找到Rosenbrock函数的最小值。

目录
打赏
0
1
0
1
134
分享
相关文章
基于BBO生物地理优化的三维路径规划算法MATLAB仿真
本程序基于BBO生物地理优化算法,实现三维空间路径规划的MATLAB仿真(测试版本:MATLAB2022A)。通过起点与终点坐标输入,算法可生成避障最优路径,并输出优化收敛曲线。BBO算法将路径视为栖息地,利用迁移和变异操作迭代寻优。适应度函数综合路径长度与障碍物距离,确保路径最短且安全。程序运行结果完整、无水印,适用于科研与教学场景。
基于NSGAII的的柔性作业调度优化算法MATLAB仿真,仿真输出甘特图
本程序基于NSGA-II算法实现柔性作业调度优化,适用于多目标优化场景(如最小化完工时间、延期、机器负载及能耗)。核心代码完成任务分配与甘特图绘制,支持MATLAB 2022A运行。算法通过初始化种群、遗传操作和选择策略迭代优化调度方案,最终输出包含完工时间、延期、机器负载和能耗等关键指标的可视化结果,为制造业生产计划提供科学依据。
JavaScript 中通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能,JS中排序算法的使用详解(附实际应用代码)
Array.sort() 是一个功能强大的方法,通过自定义的比较函数,可以处理各种复杂的排序逻辑。无论是简单的数字排序,还是多字段、嵌套对象、分组排序等高级应用,Array.sort() 都能胜任。同时,通过性能优化技巧(如映射排序)和结合其他数组方法(如 reduce),Array.sort() 可以用来实现高效的数据处理逻辑。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
基于入侵野草算法的KNN分类优化matlab仿真
本程序基于入侵野草算法(IWO)优化KNN分类器,通过模拟自然界中野草的扩散与竞争过程,寻找最优特征组合和超参数。核心步骤包括初始化、繁殖、变异和选择,以提升KNN分类效果。程序在MATLAB2022A上运行,展示了优化后的分类性能。该方法适用于高维数据和复杂分类任务,显著提高了分类准确性。
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
基于生物地理算法的MLP多层感知机优化matlab仿真
本程序基于生物地理算法(BBO)优化MLP多层感知机,通过MATLAB2022A实现随机数据点的趋势预测,并输出优化收敛曲线。BBO模拟物种在地理空间上的迁移、竞争与适应过程,以优化MLP的权重和偏置参数,提升预测性能。完整程序无水印,适用于机器学习和数据预测任务。
104 31
基于LSB最低有效位的音频水印嵌入提取算法FPGA实现,包含testbench和MATLAB对比
本项目展示了一种基于FPGA的音频水印算法,采用LSB(最低有效位)技术实现版权保护与数据追踪功能。使用Vivado2019.2和Matlab2022a开发,完整代码含中文注释及操作视频。算法通过修改音频采样点的最低有效位嵌入水印,人耳难以察觉变化。然而,面对滤波或压缩等攻击时,水印提取可能受影响。该项目运行效果无水印干扰,适合实时应用场景,核心逻辑简单高效,时间复杂度低。
基于GA遗传算法的拱桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现拱桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率要求(0.95≤ηq≤1.05),目标是使ηq尽量接近1,同时减少车辆数量和布载耗时。程序在MATLAB 2022A版本下运行,展示了工况1至工况3的测试结果。通过优化模型,综合考虑车辆重量、位置、类型及车道占用等因素,确保桥梁关键部位承受最大荷载,从而有效评估桥梁性能。核心代码实现了迭代优化过程,并输出最优布载方案及相关参数。
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。

云原生

+关注
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等