AI计算机视觉笔记二十 九:yolov10竹签模型,自动数竹签

简介: 本文介绍了如何在AutoDL平台上搭建YOLOv10环境并进行竹签检测与计数。首先从官网下载YOLOv10源码并创建虚拟环境,安装依赖库。接着通过官方模型测试环境是否正常工作。然后下载自定义数据集并配置`mycoco128.yaml`文件,使用`yolo detect train`命令或Python代码进行训练。最后,通过命令行或API调用测试训练结果,并展示竹签计数功能。如需转载,请注明原文出处。

若该文为原创文章,转载请注明原文出处。

原本是为部署RK3568而先熟悉yolov10流程的,采用自己的数据集,网上很多,检测竹签,并计数。

1、环境搭建

1.1 官方下载源码

官网地址:YOLOv10 gitbub官网源码
利用魔法进入GitHub官网之后点击下载源码压缩包(这里针对小白使用download,当然也可以使用git clone命令)
image.png

1.2 配置环境

使用的是AutoDL平台

image.png

创建虚拟环境

创建虚拟环境

conda create -n yolov10 python=3.9

初始化

source activate

激活

conda activate yolov10

安装前需要修改requirements.txt文件,把文件里的onnxruntime-gpu==1.18.0改成onnx

runtime-gpu==1.16.0

开始安装

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install -e . -i https://pypi.tuna.tsinghua.edu.cn/simple

2、测试

测试直接使用官方模型测试

模型下载命令

wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt

这里使用的是 yolov10s.pt。

测试指令

yolo predict model=yolov10s.pt source=ultralytics/assets/bus.jpg

或是使用代码测试

from ultralytics import YOLOv10

# Load a pretrained YOLOv10n model
model = YOLOv10("./weights/zhuqian.pt")

# Perform object detection on an image
results = model.predict("./test.jpg")

# Display the results
results[0].show()
results[0].save()

image.png

3、训练

3.1下载数据集

训练的是自己的数据集,想实现的是数竹签,需要数据集自行下载。

链接:https://pan.baidu.com/s/1paB9rDH8PUBNinw8DzLPiQ?pwd=1234 
提取码:1234 复制这段内容后打开百度网盘手机App,操作更方便哦

直接把数据集解压到yolov10工程目录下。

文件结构如下

image.png

3.2 yaml文件

进入yolov10\ultralytics\cfg\datasets目录,拷贝coco128.yaml文件一份为mycoco128.yaml。

修改mycoco128.yaml, 修改后的文件,修改数据集路径和修改标签。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/coco/
# Example usage: yolo train data=coco128.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco128  ← downloads here (7 MB)

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: G:/资料/嵌入式/【正点原子】RK3568开发板资料(A盘)-基础资料/01、AI例程/Ai_Code/40_yolov10/yolov10/dataset # dataset root dir
train: images/train # train images (relative to 'path') 128 images
val: images/val # val images (relative to 'path') 128 images
test: # test images (optional)

# Classes
names:
    0: skewer

# Download script/URL (optional)
#download: https://ultralytics.com/assets/coco128.zip

3.3 训练

使用下面命令训练。

yolo detect train data=/root/yolov10/ultralytics/cfg/datasets/mycoco128.yaml model=yolov10s.pt epochs=100 batch=16 imgsz=640

或代码训练

#coding:utf-8
from ultralytics import YOLOv10
# 模型配置文件
model_yaml_path = "ultralytics/cfg/models/v10/yolov10s.yaml"
#数据集配置文件
data_yaml_path = '/root/yolov10/ultralytics/cfg/datasets/coco128_zhuqian.yaml '
#预训练模型
pre_model_name = 'yolov10s.pt'

if __name__ == '__main__':
    #加载预训练模型
    model = YOLOv10(model_yaml_path).load(pre_model_name)
    #训练模型
    results = model.train(data=data_yaml_path,
                          epochs=150,
                          batch=16,
                          name='train_v10')

这里有个疑问,训练时好像不是使用yolov10s.pt模型,而是会下载yolov8n.pt模型。

image.png

4 结果测试

命令测试

yolo predict model=weights/zhuqian_no.pt source=test.py
命令测试比较方便,但如果想自己写,还是要使用API。

主要还是要学习怎么使用API

import cv2
from  ultralytics import YOLOv10
import os

model = YOLOv10(model="./weigths/best_zq.pt")

def predict(chosen_model, img, classes=[], conf=0.5):
    if classes:
        results = chosen_model.predict(img, classes=classes, conf=conf)
    else:
        results = chosen_model.predict(img, conf=conf)

    return results

def predict_and_detect(chosen_model, img, classes=[], conf=0.5, rectangle_thickness=2, text_thickness=1):
    results = predict(chosen_model, img, classes, conf=conf)
    count = 0
    for result in results:
        for box in result.boxes:
            cv2.rectangle(img, (int(box.xyxy[0][0]), int(box.xyxy[0][1])),
                          (int(box.xyxy[0][2]), int(box.xyxy[0][3])), (255, 0, 0), rectangle_thickness)

            #cv2.putText(img, f"{result.names[int(box.cls[0])]}",
            #            (int(box.xyxy[0][0]), int(box.xyxy[0][1]) - 10),
            #           cv2.FONT_HERSHEY_PLAIN, 1, (255, 0, 0), text_thickness)
            count += 1

    # 在图像上显示计数
    font = cv2.FONT_HERSHEY_SIMPLEX
    text = f"Count: {count}"
    cv2.putText(img, text, (10, 160), font, 5, (00, 00, 255), 4, cv2.LINE_AA)

    return img, results

image_folder = './dataset/images/train/'  # 图片文件夹路径
for image_name in os.listdir(image_folder):
    if image_name.endswith('.jpg') or image_name.endswith('.png'):
        image_path = os.path.join(image_folder, image_name)
        # read the image
        image = cv2.imread(image_path)
        result_img, _ = predict_and_detect(model, image, classes=[], conf=0.4)

        cv2.namedWindow("Image", cv2.WINDOW_NORMAL)
        cv2.moveWindow("Image", 400, 100)

        cv2.imshow("Image", result_img)
        #cv2.imwrite("result.jpg", result_img)
        cv2.waitKey(240)  # 每张图片显示500毫秒

cv2.waitKey(0)  

"""
output_filename = "YourFilename"
writer = create_video_writer(cap, output_filename)
video_path = r"YourVideoPath"
cap = cv2.VideoCapture(video_path)
while True:
    success, img = cap.read()
    if not success:
        break
    result_img, _ = predict_and_detect(model, img, classes=[], conf=0.5)
    writer.write(result_img)
    cv2.imshow("Image", result_img)

    cv2.waitKey(1)
writer.release()
"""

代码比较简单,基本和yolo其他版本差不多。

测试结果

image.png

相关文章
|
25天前
|
人工智能 自然语言处理 搜索推荐
AI Compass前沿速览:Qoder Agentic编程、vivo Vision头显、AIRI桌面伴侣、RM-Gallery奖励模型平台
AI Compass前沿速览:Qoder Agentic编程、vivo Vision头显、AIRI桌面伴侣、RM-Gallery奖励模型平台
AI Compass前沿速览:Qoder Agentic编程、vivo Vision头显、AIRI桌面伴侣、RM-Gallery奖励模型平台
|
1月前
|
人工智能 JavaScript 测试技术
Cradle:颠覆AI Agent 操作本地软件,AI驱动的通用计算机控制框架,如何让基础模型像人一样操作你的电脑?
Cradle 是由 BAAI‑Agents 团队开源的通用计算机控制(GCC)多模态 AI Agent 框架,具备视觉输入、键鼠操作输出、自主学习与反思能力,可操作各类本地软件及游戏,实现任务自动化与复杂逻辑执行。
161 6
|
1月前
|
存储 人工智能 算法
AI测试平台实战:深入解析自动化评分和多模型对比评测
在AI技术迅猛发展的今天,测试工程师面临着如何高效评估大模型性能的全新挑战。本文将深入探讨AI测试平台中自动化评分与多模型对比评测的关键技术与实践方法,为测试工程师提供可落地的解决方案。
|
2月前
|
机器学习/深度学习 人工智能 PyTorch
AI 基础知识从 0.2 到 0.3——构建你的第一个深度学习模型
本文以 MNIST 手写数字识别为切入点,介绍了深度学习的基本原理与实现流程,帮助读者建立起对神经网络建模过程的系统性理解。
229 15
AI 基础知识从 0.2 到 0.3——构建你的第一个深度学习模型
|
2月前
|
机器学习/深度学习 人工智能 编解码
AI-Compass LLM合集-多模态模块:30+前沿大模型技术生态,涵盖GPT-4V、Gemini Vision等国际领先与通义千问VL等国产优秀模型
AI-Compass LLM合集-多模态模块:30+前沿大模型技术生态,涵盖GPT-4V、Gemini Vision等国际领先与通义千问VL等国产优秀模型
AI-Compass LLM合集-多模态模块:30+前沿大模型技术生态,涵盖GPT-4V、Gemini Vision等国际领先与通义千问VL等国产优秀模型
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
AI 基础知识从 0.3 到 0.4——如何选对深度学习模型?
本系列文章从机器学习基础出发,逐步深入至深度学习与Transformer模型,探讨AI关键技术原理及应用。内容涵盖模型架构解析、典型模型对比、预训练与微调策略,并结合Hugging Face平台进行实战演示,适合初学者与开发者系统学习AI核心知识。
238 15
|
1月前
|
人工智能 自然语言处理 负载均衡
排期延误预警:用AI预测项目风险的3层模型搭建教程
本文介绍了如何通过 AI 智能排期将项目排期误差减少 40% 以上。文章剖析了传统排期中常见的经验依赖、资源冲突、需求变更和进度滞后四大痛点,提出 AI 排期的三步落地方法:历史数据建模、动态适配需求、资源智能匹配,并推荐适配不同团队的 AI 排期工具。强调 AI 是辅助而非替代,核心在于用数据驱动提升排期准确性,帮助团队告别“拍脑袋估期”,实现高效、可控的项目管理。
排期延误预警:用AI预测项目风险的3层模型搭建教程
|
1月前
|
人工智能 边缘计算 自然语言处理
普通电脑也能跑AI:10个8GB内存的小型本地LLM模型推荐
随着模型量化技术的发展,大语言模型(LLM)如今可在低配置设备上高效运行。本文介绍本地部署LLM的核心技术、主流工具及十大轻量级模型,探讨如何在8GB内存环境下实现高性能AI推理,涵盖数据隐私、成本控制与部署灵活性等优势。
652 0
普通电脑也能跑AI:10个8GB内存的小型本地LLM模型推荐
|
2月前
|
人工智能 安全 API
用Qwen Code,体验全新AI编程——高效模型接入首选ModelGate
Qwen Code 是通义千问推出的AI编程助手,支持自然语言编程与智能代码生成,大幅提升开发效率。结合 ModelGate,可实现多模型统一管理、安全调用,解决API切换、权限控制、稳定性等问题,是Claude Code的理想国产替代方案。

热门文章

最新文章