AI计算机视觉笔记二十 九:yolov10竹签模型,自动数竹签

简介: 本文介绍了如何在AutoDL平台上搭建YOLOv10环境并进行竹签检测与计数。首先从官网下载YOLOv10源码并创建虚拟环境,安装依赖库。接着通过官方模型测试环境是否正常工作。然后下载自定义数据集并配置`mycoco128.yaml`文件,使用`yolo detect train`命令或Python代码进行训练。最后,通过命令行或API调用测试训练结果,并展示竹签计数功能。如需转载,请注明原文出处。

若该文为原创文章,转载请注明原文出处。

原本是为部署RK3568而先熟悉yolov10流程的,采用自己的数据集,网上很多,检测竹签,并计数。

1、环境搭建

1.1 官方下载源码

官网地址:YOLOv10 gitbub官网源码
利用魔法进入GitHub官网之后点击下载源码压缩包(这里针对小白使用download,当然也可以使用git clone命令)
image.png

1.2 配置环境

使用的是AutoDL平台

image.png

创建虚拟环境

创建虚拟环境

conda create -n yolov10 python=3.9
AI 代码解读

初始化

source activate
AI 代码解读

激活

conda activate yolov10
AI 代码解读

安装前需要修改requirements.txt文件,把文件里的onnxruntime-gpu==1.18.0改成onnx

runtime-gpu==1.16.0
AI 代码解读

开始安装

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install -e . -i https://pypi.tuna.tsinghua.edu.cn/simple
AI 代码解读

2、测试

测试直接使用官方模型测试

模型下载命令

wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt
AI 代码解读

这里使用的是 yolov10s.pt。

测试指令

yolo predict model=yolov10s.pt source=ultralytics/assets/bus.jpg
AI 代码解读

或是使用代码测试

from ultralytics import YOLOv10

# Load a pretrained YOLOv10n model
model = YOLOv10("./weights/zhuqian.pt")

# Perform object detection on an image
results = model.predict("./test.jpg")

# Display the results
results[0].show()
results[0].save()
AI 代码解读

image.png

3、训练

3.1下载数据集

训练的是自己的数据集,想实现的是数竹签,需要数据集自行下载。

链接:https://pan.baidu.com/s/1paB9rDH8PUBNinw8DzLPiQ?pwd=1234 
提取码:1234 复制这段内容后打开百度网盘手机App,操作更方便哦
AI 代码解读

直接把数据集解压到yolov10工程目录下。

文件结构如下

image.png

3.2 yaml文件

进入yolov10\ultralytics\cfg\datasets目录,拷贝coco128.yaml文件一份为mycoco128.yaml。

修改mycoco128.yaml, 修改后的文件,修改数据集路径和修改标签。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/coco/
# Example usage: yolo train data=coco128.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco128  ← downloads here (7 MB)

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: G:/资料/嵌入式/【正点原子】RK3568开发板资料(A盘)-基础资料/01、AI例程/Ai_Code/40_yolov10/yolov10/dataset # dataset root dir
train: images/train # train images (relative to 'path') 128 images
val: images/val # val images (relative to 'path') 128 images
test: # test images (optional)

# Classes
names:
    0: skewer

# Download script/URL (optional)
#download: https://ultralytics.com/assets/coco128.zip
AI 代码解读

3.3 训练

使用下面命令训练。

yolo detect train data=/root/yolov10/ultralytics/cfg/datasets/mycoco128.yaml model=yolov10s.pt epochs=100 batch=16 imgsz=640
AI 代码解读

或代码训练

#coding:utf-8
from ultralytics import YOLOv10
# 模型配置文件
model_yaml_path = "ultralytics/cfg/models/v10/yolov10s.yaml"
#数据集配置文件
data_yaml_path = '/root/yolov10/ultralytics/cfg/datasets/coco128_zhuqian.yaml '
#预训练模型
pre_model_name = 'yolov10s.pt'

if __name__ == '__main__':
    #加载预训练模型
    model = YOLOv10(model_yaml_path).load(pre_model_name)
    #训练模型
    results = model.train(data=data_yaml_path,
                          epochs=150,
                          batch=16,
                          name='train_v10')
AI 代码解读

这里有个疑问,训练时好像不是使用yolov10s.pt模型,而是会下载yolov8n.pt模型。

image.png

4 结果测试

命令测试

yolo predict model=weights/zhuqian_no.pt source=test.py
命令测试比较方便,但如果想自己写,还是要使用API。

主要还是要学习怎么使用API

import cv2
from  ultralytics import YOLOv10
import os

model = YOLOv10(model="./weigths/best_zq.pt")

def predict(chosen_model, img, classes=[], conf=0.5):
    if classes:
        results = chosen_model.predict(img, classes=classes, conf=conf)
    else:
        results = chosen_model.predict(img, conf=conf)

    return results

def predict_and_detect(chosen_model, img, classes=[], conf=0.5, rectangle_thickness=2, text_thickness=1):
    results = predict(chosen_model, img, classes, conf=conf)
    count = 0
    for result in results:
        for box in result.boxes:
            cv2.rectangle(img, (int(box.xyxy[0][0]), int(box.xyxy[0][1])),
                          (int(box.xyxy[0][2]), int(box.xyxy[0][3])), (255, 0, 0), rectangle_thickness)

            #cv2.putText(img, f"{result.names[int(box.cls[0])]}",
            #            (int(box.xyxy[0][0]), int(box.xyxy[0][1]) - 10),
            #           cv2.FONT_HERSHEY_PLAIN, 1, (255, 0, 0), text_thickness)
            count += 1

    # 在图像上显示计数
    font = cv2.FONT_HERSHEY_SIMPLEX
    text = f"Count: {count}"
    cv2.putText(img, text, (10, 160), font, 5, (00, 00, 255), 4, cv2.LINE_AA)

    return img, results

image_folder = './dataset/images/train/'  # 图片文件夹路径
for image_name in os.listdir(image_folder):
    if image_name.endswith('.jpg') or image_name.endswith('.png'):
        image_path = os.path.join(image_folder, image_name)
        # read the image
        image = cv2.imread(image_path)
        result_img, _ = predict_and_detect(model, image, classes=[], conf=0.4)

        cv2.namedWindow("Image", cv2.WINDOW_NORMAL)
        cv2.moveWindow("Image", 400, 100)

        cv2.imshow("Image", result_img)
        #cv2.imwrite("result.jpg", result_img)
        cv2.waitKey(240)  # 每张图片显示500毫秒

cv2.waitKey(0)  

"""
output_filename = "YourFilename"
writer = create_video_writer(cap, output_filename)
video_path = r"YourVideoPath"
cap = cv2.VideoCapture(video_path)
while True:
    success, img = cap.read()
    if not success:
        break
    result_img, _ = predict_and_detect(model, img, classes=[], conf=0.5)
    writer.write(result_img)
    cv2.imshow("Image", result_img)

    cv2.waitKey(1)
writer.release()
"""
AI 代码解读

代码比较简单,基本和yolo其他版本差不多。

测试结果

image.png

目录
打赏
0
3
4
1
45
分享
相关文章
生成AI的两大范式:扩散模型与Flow Matching的理论基础与技术比较
本文系统对比了扩散模型与Flow Matching两种生成模型技术。扩散模型通过逐步添加噪声再逆转过程生成数据,类比为沙堡的侵蚀与重建;Flow Matching构建分布间连续路径的速度场,如同矢量导航系统。两者在数学原理、训练动态及应用上各有优劣:扩散模型适合复杂数据,Flow Matching采样效率更高。文章结合实例解析两者的差异与联系,并探讨其在图像、音频等领域的实际应用,为生成建模提供了全面视角。
76 1
Vibe Draw:涂鸦秒变3D模型!开源AI建模神器解放创意生产力
Vibe Draw 是一款基于AI技术的开源3D建模工具,通过Next.js和FastAPI构建,能将用户绘制的2D草图智能转化为3D模型,并支持文本提示优化和场景构建。
60 35
Vibe Draw:涂鸦秒变3D模型!开源AI建模神器解放创意生产力
TripoSF:3D建模内存暴降80%!VAST AI新一代模型细节狂飙82%
TripoSF 是 VAST AI 推出的新一代 3D 基础模型,采用创新的 SparseFlex 表示方法,支持 1024³ 高分辨率建模,内存占用降低 82%,在细节捕捉和复杂结构处理上表现优异。
46 10
TripoSF:3D建模内存暴降80%!VAST AI新一代模型细节狂飙82%
模型即产品:万字详解RL驱动的AI Agent模型如何巨震AI行业范式
未来 AI 智能体的发展方向还得是模型本身,而不是工作流(Work Flow)。像 Manus 这样基于「预先编排好的提示词与工具路径」构成的工作流智能体,短期或许表现不错,但长期必然遇到瓶颈。这种「提示驱动」的方式无法扩展,也无法真正处理那些需要长期规划、多步骤推理的复杂任务。下一代真正的LLM智能体,则是通过「强化学习(RL)与推理(Reasoning)的结合」来实现的。
54 10
模型即产品:万字详解RL驱动的AI Agent模型如何巨震AI行业范式
Cosmos-Reason1:物理常识觉醒!NVIDIA 56B模型让AI懂重力+时空法则
Cosmos-Reason1是NVIDIA推出的多模态大语言模型系列,具备物理常识理解和具身推理能力,支持视频输入和长链思考,可应用于机器人、自动驾驶等场景。
36 8
Cosmos-Reason1:物理常识觉醒!NVIDIA 56B模型让AI懂重力+时空法则
智谱AI新突破!GLM-Z1-Rumination:新一代沉思模型,推动AI助手进入"高智商+高自主"的新阶段
GLM-Z1-Rumination是智谱推出的新一代沉思模型,通过扩展强化学习训练实现长程推理能力,支持动态工具调用与自我验证机制,显著提升AI自主研究能力。
32 12
智谱AI新突破!GLM-Z1-Rumination:新一代沉思模型,推动AI助手进入"高智商+高自主"的新阶段
使用 Ollama 本地模型与 Spring AI Alibaba 的强强结合,打造下一代 RAG 应用
使用 Ollama 本地模型与 Spring AI Alibaba 的强强结合,打造下一代 RAG 应用
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
33 6
轻量级AI革命:无需GPU就能运算的DeepSeek-R1-1.5B模型及其低配部署指南
随着AI技术发展,大语言模型成为产业智能化的关键工具。DeepSeek系列模型以其创新架构和高效性能备受关注,其中R1-1.5B作为参数量最小的版本,适合资源受限场景。其部署仅需4核CPU、8GB RAM及15GB SSD,适用于移动对话、智能助手等任务。相比参数更大的R1-35B与R1-67B+,R1-1.5B成本低、效率高,支持数学计算、代码生成等多领域应用,是个人开发者和初创企业的理想选择。未来,DeepSeek有望推出更多小型化模型,拓展低资源设备的AI生态。
76 8
17.1K star!两小时就能训练出专属与自己的个性化小模型,这个开源项目让AI触手可及!
🔥「只需一张消费级显卡,2小时完成26M参数GPT训练!」 🌟「从零构建中文大模型的最佳实践指南」 🚀「兼容OpenAI API,轻松接入各类AI应用平台」

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等