AI计算机视觉笔记二十五:ResNet50训练部署教程

简介: 该项目旨在训练ResNet50模型并将其部署到RK3568开发板上。首先介绍了ResNet50网络,该网络由何恺明等人于2015年提出,解决了传统卷积神经网络中的退化问题。项目使用车辆分类数据集进行训练,并提供了数据集下载链接。环境搭建部分详细描述了虚拟环境的创建和所需库的安装。训练过程中,通过`train.py`脚本进行了15轮训练,并可视化了训练和测试结果。最后,项目提供了将模型转换为ONNX和PT格式的方法,以便在RK3568上部署。

ResNet50训练主要还是想部署到RK3568开发板上,先记录下训练和转成ONNX模型过程。

一、 Resnet50简介

   ResNet50网络是2015年由微软实验室的何恺明提出,获得ILSVRC2015图像分类竞赛第一名。在ResNet网络提出之前,传统的卷积神经网络都是将一系列的卷积层和池化层堆叠得到的,但当网络堆叠到一定深度时,就会出现退化问题。 残差网络的特点是容易优化,并且能够通过增加相当的深度来提高准确率。其内部的残差块使用了跳跃连接,缓解了在深度神经网络中增加深度带来的梯度消失问题。

image.png

二、数据集下载

   本教程以车辆分类算法为例,数据集的百度网盘下载链接为:
https://pan.baidu.com/s/1pkYm9AA3s3WDM7GecShlbQ 提取码:6666​

解压完成后得到以下两个文件夹:
image.png
打开可以看到一共10类汽车:

image.png
image.png

三、环境搭建

1、创建虚拟环境

conda create -n Resnet50_env python=3.8 -y

2、激活环境

conda activate Resnet50_env
注意:使用的是CPU版本,电脑无GPU

3、安装环境

pip install numpy
pip install torch
pip install torchvision
pip install matplotlib
至此,环境安装完成,开始训练

四、 ResNet50图像分类训练

直接上源码:train.py

# -#-coding:utf-8 -*-

import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torch.autograd.variable import Variable
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True

# 2.定义超参数
BATCH_SIZE = 16  # 每批处理的数据
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')  # 放在cuda或者cpu上训练
EPOCHS = 15  # 训练数据集的轮次
modellr = 1e-3

# 3.构建pipeline,对图像做处理
pipeline = transforms.Compose([
    # 分辨率重置为256
    transforms.Resize(256),
    # 对加载的图像作归一化处理, 并裁剪为[224x224x3]大小的图像(因为这图片像素不一致直接统一)
    transforms.CenterCrop(224),
    # 将图片转成tensor
    transforms.ToTensor(),
    # 正则化,模型出现过拟合现象时,降低模型复杂度
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

# 图片路径(训练图片和测试图片的)
base_dir_train = 'G:/enpei_Project_Code/22_Resnet50_bus/1.data/datasets/train'
base_dir_val = 'G:/enpei_Project_Code/22_Resnet50_bus/1.data/datasets/val'

# 4. 加载数据集
train_dataset = datasets.ImageFolder(root=base_dir_train, transform=pipeline)
print("train_dataset=" + repr(train_dataset[1][0].size()))
print("train_dataset.class_to_idx=" + repr(train_dataset.class_to_idx))
# 创建训练集的可迭代对象,一个batch_size地读取数据,shuffle设为True表示随机打乱顺序读取
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)

# 测试集
val_dataset = datasets.ImageFolder(root=base_dir_val, transform=pipeline)
print(val_dataset)
print("val_dataset=" + repr(val_dataset[1][0].size()))
print("val_dataset.class_to_idx=" + repr(val_dataset.class_to_idx))
# 创建测试集的可迭代对象,一个batch_size地读取数据
val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=True)


# 获得一批测试集的数据
images, labels = next(iter(val_loader))
print(images.shape)
print(labels.shape)


# 损失函数,交叉熵损失函数
criterion = nn.CrossEntropyLoss()

# 使用预训练模型
resnet_model = torchvision.models.resnet50(pretrained=True)
num_ftrs = resnet_model.fc.in_features
resnet_model.fc = nn.Linear(num_ftrs, 10)
resnet_model.to(DEVICE)
# 选择简单暴力的Adam优化器,学习率调低
optimizer = optim.Adam(resnet_model.parameters(), lr=modellr)
#optimizer = optim.SGD(net.parameters(), lr = 0.01)

train_loss_list = []
train_accuracy_list = []
test_loss_list = []
test_accuracy_list = []
train_iteration_list = []
test_iteration_list = []


best_val_acc = 0


# 定义训练方法
def train(model, device, train_loader, optimizer, epoch):
    iteration = 0
    train_correct = 0.0
    model.train()
    sum_loss = 0.0
    total_num = len(train_loader.dataset)
    print(total_num, len(train_loader))
    for batch_idx, (data, target) in enumerate(train_loader):
        # 获取数据与标签
        data, target = Variable(data).to(device), Variable(target).to(device)

        # 梯度清零
        optimizer.zero_grad()

        # 计算损失
        output = model(data)
        loss = criterion(output, target)

        #反向传播
        loss.backward()

        #更新参数
        optimizer.step()

        print_loss = loss.data.item()
        sum_loss += print_loss
        _, train_predict = torch.max(output.data, 1)

        if torch.cuda.is_available():
            train_correct += (train_predict.cuda() == target.cuda()).sum()
        else:
            train_correct += (train_predict == target).sum()
        accuracy = (train_correct / total_num) * 100
        print("Epoch: %d , Batch: %3d , Loss : %.8f,train_correct:%d , train_total:%d , accuracy:%.6f" % (
            epoch + 1, batch_idx + 1, loss.item(), train_correct, total_num, accuracy))
        # 存在集合画图
        if (epoch + 1) == EPOCHS:  # 只画出最后一个epoch时候的准确度变化曲线
            iteration += 1
            train_loss_list.append(loss.item())
            train_iteration_list.append(iteration)
            train_accuracy_list.append(accuracy)


# 定义验证方法
def val(model, device, val_loader, epoch):
    print("=====================预测开始=================================")
    iteration = 0
    model.eval()
    test_loss = 0.0
    correct = 0.0
    total_num = len(val_loader.dataset)
    print(total_num, len(val_loader))
    with torch.no_grad():
        for data, target in val_loader:
            data, target = Variable(data).to(device), Variable(target).to(device)
            output = model(data)
            loss = criterion(output, target)
            _, pred = torch.max(output.data, 1)
            if torch.cuda.is_available():
                correct += torch.sum(pred.cuda() == target.cuda())
            else:
                correct += torch.sum(pred == target)
            print_loss = loss.data.item()
            test_loss += print_loss
        acc = correct / total_num * 100
        avg_loss = test_loss / len(val_loader)
        """
            因为调用这个方法的时候就是每次结束训练一次之后调用
        """
        # iteration += 1
        # 存入集合准备画图
        test_loss_list.append(avg_loss)
        test_accuracy_list.append(acc)
        test_iteration_list.append(epoch)
        print('\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.6f}%)\n'.format(
            avg_loss, correct, len(val_loader.dataset), acc))

        global best_val_acc
        if acc > best_val_acc:
            best_val_acc = acc
            print("Best Accuracy:{:.6f}%".format(best_val_acc))
            torch.save(resnet_model.state_dict(), 'best-{:.6f}.model.pth'.format(best_val_acc))  # 保存模型


# 训练
for epoch in range(EPOCHS):
    train(resnet_model, DEVICE, train_loader, optimizer, epoch)
    val(resnet_model, DEVICE, val_loader, epoch)
    #torch.save(resnet_model, 'model.pth')  # 保存模型

# 可视化测试机的loss和accuracy
plt.figure(1)
plt.plot(test_iteration_list, test_loss_list)
plt.title("ResNet50 test loss")
plt.ylabel("loss")
plt.xlabel("Number of test iteration")
plt.show()

plt.figure(2)
plt.plot(test_iteration_list, test_accuracy_list)
plt.title("ResNet50 test accuracy")
plt.xlabel("Number of test iteration")
plt.ylabel("accuracy")
plt.show()

# 可视化训练集loss和accuracy
plt.figure(3)
plt.plot(train_iteration_list, train_loss_list)
plt.title("ResNet50 train loss")
plt.xlabel("Number of train iteration")
plt.ylabel("accuracy")
plt.show()

plt.figure(4)
plt.plot(train_iteration_list, train_accuracy_list)
plt.title("ResNet50 train accuracy")
plt.xlabel("Number of train iteration")
plt.ylabel("accuracy")
plt.show()

代码需要注意的是数据集路径,用的是绝对路径,自行修改。
image.png
代码训练的epoch是15,等待一段时间吧!

五、测试模型

测试模型脚本predict.py

import os
from PIL import Image
import cv2
import torch
import torch.nn as nn
from torch.autograd.variable import Variable
import torchvision
from torchvision import transforms

# 0-SUV, 1-BUS, 2-family sedan, 3-fire engine, 4-heavy truck, 
# 5-jeep, 6-mini bus, 7-racing car, 8-taxi, 9-truck

def predict_single_image():

    MODEL_SAVE_FILE = 'best-82.000000.model.pth'
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

    model = torchvision.models.resnet50()
    num_ftrs = model.fc.in_features
    model.fc = nn.Linear(num_ftrs, 10)
    model.to(device)

    model.load_state_dict(torch.load(MODEL_SAVE_FILE,map_location='cpu'))


    model = torch.nn.DataParallel(model,device_ids=[0])
    model.eval()

    img = cv2.imread("test.jpg")
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    image = Image.fromarray(img)

    pipeline = transforms.Compose([
    # 分辨率重置为256
    transforms.Resize(256),
    # 对加载的图像作归一化处理, 并裁剪为[224x224x3]大小的图像(因为这图片像素不一致直接统一)
    transforms.CenterCrop(224),
    # 将图片转成tensor
    transforms.ToTensor(),
    # 正则化,模型出现过拟合现象时,降低模型复杂度
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])

    image = pipeline(image)
    image = image.unsqueeze(0)
    print(image.shape)

    input_var = Variable(image).float().to(device)
    output = model(input_var)
    print("output:", output)
    print("output.shape:", output.shape)

    soft_output = torch.softmax(output, dim=-1)
    print("soft_output:", soft_output)

    percent, predicted = torch.max(soft_output.data, 1)
    print("percent:", percent)
    print("predicted:", predicted)

    '''
    USE_GPU = torch.cuda.is_available()
    if USE_GPU:
        inputs = inputs.cuda()
    if not os.path.exists(MODEL_SAVE_FILE):
        print('can not find model save file.')
        exit()
    else:
        if USE_GPU:
            model.load_state_dict(torch.load(MODEL_SAVE_FILE))
        else:
            model.load_state_dict(torch.load(MODEL_SAVE_FILE, map_location=lambda storage, loc: storage))
        outputs = model(inputs)
        _, prediction_tensor = torch.max(outputs.data, 1)
        if USE_GPU:
            prediction = prediction_tensor.cpu().numpy()[0][0]
            print('predict: ', prediction)
            print('this is {}'.format(classes_name[prediction]))
        else:
            prediction = prediction_tensor.numpy()[0][0]
            print('predict: ', prediction)
            print('this is {}'.format(classes_name[prediction]))
    '''


predict_single_image()

运行

python predict.py
image.png

六、模型转换

1、转成onnx模型

pth_to_onnx.py

import torch
import torch.nn as nn
import torchvision
from torch.autograd.variable import Variable


MODEL_SAVE_FILE = 'best-82.000000.model.pth'
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

model = torchvision.models.resnet50()
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 10)
model.to(device)

model.load_state_dict(torch.load(MODEL_SAVE_FILE,map_location='cpu'))

batch_size = 1  #批处理大小

# #set the model to inference mode
model.eval()

d_input = Variable(torch.randn(1, 3, 224, 224))
export_onnx_file = "10class_ResNet50.onnx"        # 目的ONNX文件名
torch.onnx.export(model, d_input, export_onnx_file, opset_version=12,verbose=True)

这里需要注意的 是opset_version算子,rk3568用12
python pth_to_onnx.py
image.png
onnx模型是我需要的,打算部署到rk3568,需要把onnx模型转成rknn模型,后续测试

2、转成pt模型

pth_to_pt.py

import torch
import torch.nn as nn
import torchvision


MODEL_SAVE_FILE = 'best-82.000000.model.pth'
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

model = torchvision.models.resnet50()
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 10)
model.to(device)

model.load_state_dict(torch.load(MODEL_SAVE_FILE,map_location='cpu'))

model.eval()

example = torch.rand(1,3,224,224).to(device)
traced_script_module = torch.jit.trace(model, example)
traced_script_module.save('./10class_ResNet50.pt')

运行转换:

python pth_to_pt.py

相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
相关文章
|
5月前
|
存储 机器学习/深度学习 算法
​​LLM推理效率的范式转移:FlashAttention与PagedAttention正在重塑AI部署的未来​
本文深度解析FlashAttention与PagedAttention两大LLM推理优化技术:前者通过分块计算提升注意力效率,后者借助分页管理降低KV Cache内存开销。二者分别从计算与内存维度突破性能瓶颈,显著提升大模型推理速度与吞吐量,是当前高效LLM系统的核心基石。建议收藏细读。
1043 125
|
6月前
|
机器学习/深度学习 人工智能 算法
AI 基础知识从 0.6 到 0.7—— 彻底拆解深度神经网络训练的五大核心步骤
本文以一个经典的PyTorch手写数字识别代码示例为引子,深入剖析了简洁代码背后隐藏的深度神经网络(DNN)训练全过程。
1099 56
|
4月前
|
人工智能 物联网 调度
边缘大型AI模型:协作部署与物联网应用——论文阅读
论文《边缘大型AI模型:协作部署与物联网应用》系统探讨了将大模型(LAM)部署于边缘网络以赋能物联网的前沿框架。针对传统云端部署高延迟、隐私差的问题,提出“边缘LAM”新范式,通过联邦微调、专家混合与思维链推理等技术,实现低延迟、高隐私的分布式智能。
894 6
边缘大型AI模型:协作部署与物联网应用——论文阅读
|
4月前
|
人工智能 测试技术 API
构建AI智能体:二、DeepSeek的Ollama部署FastAPI封装调用
本文介绍如何通过Ollama本地部署DeepSeek大模型,结合FastAPI实现API接口调用。涵盖Ollama安装、路径迁移、模型下载运行及REST API封装全过程,助力快速构建可扩展的AI应用服务。
1328 6
|
5月前
|
人工智能 Ubuntu 前端开发
Dify部署全栈指南:AI从Ubuntu配置到HTTPS自动化的10倍秘籍
本文档介绍如何部署Dify后端服务及前端界面,涵盖系统环境要求、依赖安装、代码拉取、环境变量配置、服务启动、数据库管理及常见问题解决方案,适用于开发与生产环境部署。
1237 1
|
4月前
|
机器学习/深度学习 人工智能 JSON
PHP从0到1实现 AI 智能体系统并且训练知识库资料
本文详解如何用PHP从0到1构建AI智能体,涵盖提示词设计、记忆管理、知识库集成与反馈优化四大核心训练维度,结合实战案例与系统架构,助你打造懂业务、会进化的专属AI助手。
506 6
|
6月前
|
人工智能 弹性计算 自然语言处理
云速搭 AI 助理发布:对话式生成可部署的阿里云架构图
阿里云云速搭 CADT(Cloud Architect Design Tools)推出智能化升级——云小搭,一款基于大模型的 AI 云架构助手,致力于让每一位用户都能“动动嘴”就完成专业级云架构设计。
805 31
|
4月前
|
机器学习/深度学习 人工智能 监控
Java与AI模型部署:构建企业级模型服务与生命周期管理平台
随着企业AI模型数量的快速增长,模型部署与生命周期管理成为确保AI应用稳定运行的关键。本文深入探讨如何使用Java生态构建一个企业级的模型服务平台,实现模型的版本控制、A/B测试、灰度发布、监控与回滚。通过集成Spring Boot、Kubernetes、MLflow和监控工具,我们将展示如何构建一个高可用、可扩展的模型服务架构,为大规模AI应用提供坚实的运维基础。
382 0

热门文章

最新文章