AI计算机视觉笔记二十一:PaddleOCR训练自定义数据集

简介: 在完成PaddleOCR环境搭建与测试后,本文档详细介绍如何训练自定义的车牌检测模型。首先,在`PaddleOCR`目录下创建`train_data`文件夹存放数据集,并下载并解压缩车牌数据集。接着,复制并修改配置文件`ch_det_mv3_db_v2.0.yml`以适应训练需求,包括设置模型存储目录、训练可视化选项及数据集路径。随后,下载预训练权重文件并放置于`pretrain_models`目录下,以便进行预测与训练。最后,通过指定命令行参数执行训练、断点续训、测试及导出推理模型等操作。

续上一篇,PaddleOCR环境搭建好了,并测试通过,接下来训练自己的检测模型和识别模型。

paddleocr检测模型训练

1、准备数据集

在PaddleOCR目录下新建文件夹:train_data, 这个文件夹用于存放数据集的。

使用的是恩培提供的车牌识别数据集,下载car_plate_images.zip后,解压到train_data目录下
image.png

2、配置文件

在PaddleOCR主目录下:configs/det/ch_ppocr_v2.0/下,

复制ch_det_mv3_db_v2.0.yml为ch_det_mv3_db_v2.0.yml_car_plate.yml
image.png
打开ch_det_mv3_db_v2.0.yml_car_plate.yml配置文件,修改以下4个内容:

1.训练后模型存储目录;

2.是否训练可视化;

3.训练数据集图片和标注位置;

4.测试数据集图片和标注位置;

其他参数如pretrained_model等可以在训练时在命令行中指定.其它的看官方文档

ch_det_mv3_db_v2.0.yml_car_plate.yml文件内修改

我的电脑没有gpu,所以use_gpu需要修改成false

配置文件完后,创建保存模型目录output/ch_ppocr_mobile_v2.0_det:
image.png

3、使用官方的权重文件进行预测

打开PaddleOCR/doc/doc_ch/models_list.md at release/2.6 · PaddlePaddle/PaddleOCR · GitHub

下载权重文件

image.png
下载后,解压,把权重文件放到PaddleOCR\pretrain_models\目录下,pretrain_models目录自己创建。

image.png
先预测一下:

预测命令:

python tools/eval.py -c "./configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml_car_plate.yml" -o Global.checkpoints="./pretrain_models/ch_ppocr_server_v2.0_det_train/best_accuracy"

image.png

4、训练

训练命令:

python tools/train.py -c "./configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml_car_plate.yml" -o Global.pretrained_model="./pretrain_models/ch_ppocr_server_v2.0_det_train/best_accuracy"

参数解释:

-c 是配置文件的路径

-o 是权重文件的路径

预测 -o Global.checkpoints=

训练 -o Global.pretrained_model=

注意这两个不一样。
image.png
断点续训: -o Global.checkpoints:保存的文件路径

python tools/train.py -c "./configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml_car_plate.yml" -o Global.pretrained_model="./mode/det/ch_ppocr_server_v2.0_det_train/best_accuracy" -o Global.checkpoints="./output/ch_db_mv3/latest"

5、測試

使用训练模型–测试1张图 -o Global.infer_img:文件位置

python tools/infer_det.py -c "./configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml_car_plate.yml"  -o Global.infer_img="./train_data/car_plate_images/images_det/test/test_5.jpg" Global.pretrained_model="./output/ch_ppocr_mobile_v2.0_det/latest"

使用训练模型–测试文件夹内所有图片 新建文件夹imgs 放测试的图片 -o Global.infer_img:文件夹位置

python tools/infer_det.py -c "./configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml_car_plate.yml"  -o Global.infer_img="./imgs/" Global.pretrained_model="./output/ch_db_mv3/latest"

训练模型保存为用于部署的推理模型 保存路径:output文件夹内

python tools/export_model.py -c "./configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml_car_plate.yml" -o Global.pretrained_model="./output/ch_db_mv3/latest" Global.save_inference_dir="./output/"

使用推理模型–预测命令: #det_algorithm 检测使用的算法 #det_model_dir 检测模型位置 #image_dir 测试图片路径 #use_gpu 是否使用GPU

python tools/infer/predict_det.py --det_algorithm="DB" --det_model_dir="./output/" --image_dir="./car_plate_images/images_det/test/" --use_gpu=True

如有侵权,或需要完整代码,请及时联系博主。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
2月前
|
人工智能 测试技术 API
AI计算机视觉笔记二十 九:yolov10竹签模型,自动数竹签
本文介绍了如何在AutoDL平台上搭建YOLOv10环境并进行竹签检测与计数。首先从官网下载YOLOv10源码并创建虚拟环境,安装依赖库。接着通过官方模型测试环境是否正常工作。然后下载自定义数据集并配置`mycoco128.yaml`文件,使用`yolo detect train`命令或Python代码进行训练。最后,通过命令行或API调用测试训练结果,并展示竹签计数功能。如需转载,请注明原文出处。
|
2月前
|
机器学习/深度学习 人工智能 PyTorch
AI计算机视觉笔记三十二:LPRNet车牌识别
LPRNet是一种基于Pytorch的高性能、轻量级车牌识别框架,适用于中国及其他国家的车牌识别。该网络无需对字符进行预分割,采用端到端的轻量化设计,结合了squeezenet和inception的思想。其创新点在于去除了RNN,仅使用CNN与CTC Loss,并通过特定的卷积模块提取上下文信息。环境配置包括使用CPU开发板和Autodl训练环境。训练和测试过程需搭建虚拟环境并安装相关依赖,执行训练和测试脚本时可能遇到若干错误,需相应调整代码以确保正确运行。使用官方模型可获得较高的识别准确率,自行训练时建议增加训练轮数以提升效果。
|
2月前
|
人工智能 开发工具 计算机视觉
AI计算机视觉笔记三十:yolov8_obb旋转框训练
本文介绍了如何使用AUTODL环境搭建YOLOv8-obb的训练流程。首先创建虚拟环境并激活,然后通过指定清华源安装ultralytics库。接着下载YOLOv8源码,并使用指定命令开始训练,过程中可能会下载yolov8n.pt文件。训练完成后,可使用相应命令进行预测测试。
|
2月前
|
人工智能 并行计算 测试技术
AI计算机视觉笔记三十一:基于UNetMultiLane的多车道线等识别
该项目基于开源数据集 VIL100 实现了 UNetMultiLane,用于多车道线及车道线类型的识别。数据集中标注了六个车道的车道线及其类型。项目详细记录了从环境搭建到模型训练与测试的全过程,并提供了在 CPU 上进行训练和 ONNX 转换的代码示例。训练过程约需 4 小时完成 50 个 epoch。此外,还实现了视频检测功能,可在视频中实时识别车道线及其类型。
|
机器学习/深度学习 人工智能 自然语言处理
欧洲科学院院士:中国领先计算机视觉和机器人领域,但AI研究还不足以支撑垂直领域解决方案
如何构建一家伟大的人工智能研究机构?深度学习在自然语言处理方面有怎样的发展?中美欧人工智能市场和技术发展差异?德国人工智能研究中心(DFKI)科学董事,北京深知无限人工智能研究院(AITC)院长兼首席科学家汉斯·乌思克尔特(Hans Uszkoreit)教授,在新智元AI技术峰会上,分享了他的精彩见解。
1567 0
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
28 1
|
7天前
|
机器学习/深度学习 人工智能 算法
AI在医疗领域的应用与挑战
本文探讨了人工智能(AI)在医疗领域的应用,包括其在疾病诊断、治疗方案制定、患者管理等方面的优势和潜力。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题以及技术局限性等。通过对这些内容的深入分析,旨在为读者提供一个全面了解AI在医疗领域现状和未来发展的视角。
35 10
|
7天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗领域的应用与挑战
本文深入探讨了人工智能(AI)在医疗领域中的应用现状和面临的挑战。通过分析AI技术如何助力疾病诊断、治疗方案优化、患者管理等方面的创新实践,揭示了AI技术为医疗行业带来的变革潜力。同时,文章也指出了数据隐私、算法透明度、跨学科合作等关键问题,并对未来的发展趋势进行了展望。
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
【10月更文挑战第31天】2024年,AI大模型在软件开发领域的应用取得了显著进展,从自动化代码生成、智能代码审查到智能化测试,极大地提升了开发效率和代码质量。然而,技术挑战、伦理与安全问题以及模型可解释性仍是亟待解决的关键问题。开发者需不断学习和适应,以充分利用AI的优势。

热门文章

最新文章