续上一篇,PaddleOCR环境搭建好了,并测试通过,接下来训练自己的检测模型和识别模型。
paddleocr检测模型训练
1、准备数据集
在PaddleOCR目录下新建文件夹:train_data, 这个文件夹用于存放数据集的。
使用的是恩培提供的车牌识别数据集,下载car_plate_images.zip后,解压到train_data目录下
2、配置文件
在PaddleOCR主目录下:configs/det/ch_ppocr_v2.0/下,
复制ch_det_mv3_db_v2.0.yml为ch_det_mv3_db_v2.0.yml_car_plate.yml
打开ch_det_mv3_db_v2.0.yml_car_plate.yml配置文件,修改以下4个内容:
1.训练后模型存储目录;
2.是否训练可视化;
3.训练数据集图片和标注位置;
4.测试数据集图片和标注位置;
其他参数如pretrained_model等可以在训练时在命令行中指定.其它的看官方文档
ch_det_mv3_db_v2.0.yml_car_plate.yml文件内修改
我的电脑没有gpu,所以use_gpu需要修改成false
配置文件完后,创建保存模型目录output/ch_ppocr_mobile_v2.0_det:
3、使用官方的权重文件进行预测
打开PaddleOCR/doc/doc_ch/models_list.md at release/2.6 · PaddlePaddle/PaddleOCR · GitHub
下载权重文件
下载后,解压,把权重文件放到PaddleOCR\pretrain_models\目录下,pretrain_models目录自己创建。
先预测一下:
预测命令:
python tools/eval.py -c "./configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml_car_plate.yml" -o Global.checkpoints="./pretrain_models/ch_ppocr_server_v2.0_det_train/best_accuracy"
4、训练
训练命令:
python tools/train.py -c "./configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml_car_plate.yml" -o Global.pretrained_model="./pretrain_models/ch_ppocr_server_v2.0_det_train/best_accuracy"
参数解释:
-c 是配置文件的路径
-o 是权重文件的路径
预测 -o Global.checkpoints=
训练 -o Global.pretrained_model=
注意这两个不一样。
断点续训: -o Global.checkpoints:保存的文件路径
python tools/train.py -c "./configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml_car_plate.yml" -o Global.pretrained_model="./mode/det/ch_ppocr_server_v2.0_det_train/best_accuracy" -o Global.checkpoints="./output/ch_db_mv3/latest"
5、測試
使用训练模型–测试1张图 -o Global.infer_img:文件位置
python tools/infer_det.py -c "./configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml_car_plate.yml" -o Global.infer_img="./train_data/car_plate_images/images_det/test/test_5.jpg" Global.pretrained_model="./output/ch_ppocr_mobile_v2.0_det/latest"
使用训练模型–测试文件夹内所有图片 新建文件夹imgs 放测试的图片 -o Global.infer_img:文件夹位置
python tools/infer_det.py -c "./configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml_car_plate.yml" -o Global.infer_img="./imgs/" Global.pretrained_model="./output/ch_db_mv3/latest"
训练模型保存为用于部署的推理模型 保存路径:output文件夹内
python tools/export_model.py -c "./configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml_car_plate.yml" -o Global.pretrained_model="./output/ch_db_mv3/latest" Global.save_inference_dir="./output/"
使用推理模型–预测命令: #det_algorithm 检测使用的算法 #det_model_dir 检测模型位置 #image_dir 测试图片路径 #use_gpu 是否使用GPU
python tools/infer/predict_det.py --det_algorithm="DB" --det_model_dir="./output/" --image_dir="./car_plate_images/images_det/test/" --use_gpu=True
如有侵权,或需要完整代码,请及时联系博主。