AI计算机视觉笔记十六:yolov5训练自己的数据集

简介: 本文介绍了一种利用云服务器AutoDL训练疲劳驾驶行为检测模型的方法。由于使用本地CPU训练效率低下,作者选择了性价比高的AutoDL云服务器。首先,从网络获取了2000多张疲劳驾驶行为图片并使用labelimg软件进行标注。接着,详细介绍了在云服务器上创建实例、上传数据集和YOLOv5模型、修改配置文件以及开始训练的具体步骤。整个训练过程耗时约3小时,最终生成了可用于检测的模型文件。

一般情况下,大部分人的电脑都是没有cpu的,cpu也是可以训练的,但花费的时间太长,实际200张图片,使用CPU训练300轮花了3天,本章记录使用云服务器来训练自己的数据集。

使用的云服务器是AutoDL,一直在使用,性价比还是比较高的。

AutoDL算力云 | 弹性、好用、省钱。租GPU就上AutoDL

训练疲劳驾驶行为检测

一、准备数据集

数据集可以自己拍照,也可以网上找,博主在网上找到了一份疲劳驾驶行为的图片,直接拿过来用了,共有2千多张。

image.png
准备好数据后需要数据标注,数据标注是大部分人工智能算法得以有效运行的关键环节。数据标注的过程是通过人工贴标的方式,为机器系统可供学习的样本。yolov5标注使用的是labelimg软件。

需要数据集,下方评论或@博主。标注数据是在本地电脑操作,标注后才把数据上传到云服务器训练

二、labelimg

1、激活环境

conda activate yolo
image.png

2、安装labelimg

使用pip 安装
pip install labelimg
安装后,在终端输入labelimg启动软件
image.png

3、标注

标记完成的数据请按照下面的格式进行放置,方便程序进行索引。 colo128 ├─ images │ ├─ test # 下面放测试集图片 │ ├─ train # 下面放训练集图片 │ └─ val # 下面放验证集图片 └─ labels ├─ test # 下面放测试集标签 ├─ train # 下面放训练集标签 ├─ val # 下面放验证集标签

3.1 打开图片及设置标注文件保存的目录并设置自动保存,这里需要主要选择yolo格式
image.png

3.2 开始标注,画框,标记目标的label,crtl+s保存,然后d切换到下一张继续标注,不断重复重复
image.png
标注完成后,把colo128打包压缩下,准备上传到服务器。

三、训练数据集

1、注册AutoDL

自行注册,云服务可以按时收费,也可以其他方式,自己选择。

2、创建实例

image.png
配置选择,选择的是3090,也可以其他,我比较喜欢就是直接选择好社区镜像,就给你创建好环境

image.png
创建后开启,可以通过多种方式登录,为了方便,直接使用JupyterLab
image.png

3、上传数据集和下载YOLOV5-5.0

删除环境自带的yolov5版本,然后下载yolov5-5.0版本,并上传到服务器,可以直接拖进去,并把标注好的数据也一并上传。
image.png

4、修改配置文件

博主是 基于colo128配置文件训练的,这里需要修改两个文件

修改文件一:复制yolov5-5.0/data/colo128.yaml为pilao_coco128.yaml

修改一:数据集路径
train: ../coco128/images/train2017/ # 128 images
val: ../coco128/images/train2017/ # 128 images

number of classes
修改,原本是80,修改成3
nc: 3
修改二:class names即标注的类,数据集标注了3类,所以修改成3类,colo128是80类
class names
names: [ 'closed_eye','closed_mouth','open_eye']
修改文件二:复制yolov5-5.0/models/yolov5s.yaml为pilao_yolov5s.yaml

注意不一定是yolov5s.yaml,这是训练时参考的模型,可以是其他的,自行了解

parameters
修改,原本是80,修改成3
nc: 3 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple

5、训练

python train.py --img 640 --batch 16 --epochs 300 --data ./data/pilao_coco128.yaml --cfg ./models/pilao_yolov5s.yaml

image.png
看到进度,已经在运行了,训练了大概3个多小时。

最后可以在runs/train/expX/weights目录下看到生成了两个pt文件

image.png

6、测试

python detect.py --source data/images/zidane.jpg --weights runs/train/exp2/weights/best.pt
路径自行修改。

相关文章
|
1月前
|
机器学习/深度学习 人工智能 算法
AI 基础知识从 0.6 到 0.7—— 彻底拆解深度神经网络训练的五大核心步骤
本文以一个经典的PyTorch手写数字识别代码示例为引子,深入剖析了简洁代码背后隐藏的深度神经网络(DNN)训练全过程。
479 56
|
2月前
|
机器学习/深度学习 人工智能 数据可视化
基于YOLOv8的AI虫子种类识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
本项目基于YOLOv8与PyQt5开发,实现虫子种类识别,支持图片、视频、摄像头等多种输入方式,具备完整训练与部署流程,开箱即用,附带数据集与源码,适合快速搭建高精度昆虫识别系统。
基于YOLOv8的AI虫子种类识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
|
2月前
|
机器学习/深度学习 人工智能 API
AI-Compass LLM训练框架生态:整合ms-swift、Unsloth、Megatron-LM等核心框架,涵盖全参数/PEFT训练与分布式优化
AI-Compass LLM训练框架生态:整合ms-swift、Unsloth、Megatron-LM等核心框架,涵盖全参数/PEFT训练与分布式优化
|
2月前
|
机器学习/深度学习 人工智能 资源调度
AI大模型训练管理工具:千亿参数时代的指挥中枢
本内容揭示了大模型训练中三大核心挑战:实验复现难、资源利用率低、合规风险高,并提出“三维控制塔”解决方案,涵盖实验管理、资源调度与合规追踪。推荐Immuta + 板栗看板等工具组合助力不同规模团队实现高效、合规、低成本的AI训练。
|
机器学习/深度学习 计算机视觉
AIGC核心技术——计算机视觉(CV)预训练大模型
【1月更文挑战第13天】AIGC核心技术——计算机视觉(CV)预训练大模型
969 3
AIGC核心技术——计算机视觉(CV)预训练大模型
|
机器学习/深度学习 PyTorch 算法框架/工具
Azure 机器学习 - 使用 ONNX 对来自 AutoML 的计算机视觉模型进行预测
Azure 机器学习 - 使用 ONNX 对来自 AutoML 的计算机视觉模型进行预测
328 0
|
人工智能 测试技术 API
AI计算机视觉笔记二十 九:yolov10竹签模型,自动数竹签
本文介绍了如何在AutoDL平台上搭建YOLOv10环境并进行竹签检测与计数。首先从官网下载YOLOv10源码并创建虚拟环境,安装依赖库。接着通过官方模型测试环境是否正常工作。然后下载自定义数据集并配置`mycoco128.yaml`文件,使用`yolo detect train`命令或Python代码进行训练。最后,通过命令行或API调用测试训练结果,并展示竹签计数功能。如需转载,请注明原文出处。
|
6月前
|
存储 人工智能 自然语言处理
关于计算机视觉中的自回归模型,这篇综述一网打尽了
这篇综述文章全面介绍了自回归模型在计算机视觉领域的应用和发展。文章首先概述了视觉中的序列表示和建模基础知识,随后根据表示策略将视觉自回归模型分为基于像素、标记和尺度的三类框架,并探讨其与生成模型的关系。文章详细阐述了自回归模型在图像、视频、3D及多模态生成等多方面的应用,列举了约250篇参考文献,并讨论了其在新兴领域的潜力和面临的挑战。此外,文章还建立了一个GitHub存储库以整理相关论文,促进了学术合作与知识传播。论文链接:https://arxiv.org/abs/2411.05902
184 1
|
机器学习/深度学习 编解码 人工智能
Vision Mamba:将Mamba应用于计算机视觉任务的新模型
Mamba是LLM的一种新架构,与Transformers等传统模型相比,它能够更有效地处理长序列。就像VIT一样现在已经有人将他应用到了计算机视觉领域,让我们来看看最近的这篇论文“Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Models,”
1140 7

热门文章

最新文章