可控高清视频生成: CogVideoX+DiffSynth-Studio = “配置拉满”

简介: 不久前,CogVideoX 开源了 5B 版本的文生视频模型。开源项目 DiffSynth-Studio 为 CogVideoX 提供了更强大的功能支持。我们一起来看一下,在DiffSynth-Studio 的加持下,“配置拉满”的 CogVideoX 有多强!

不久前,CogVideoX 开源了 5B 版本的文生视频模型。现在,开源项目 DiffSynth-Studio 为 CogVideoX 提供了更强大的功能支持。在本期文章中,我们一起来看一下,在DiffSynth-Studio 的加持下,“配置拉满”的 CogVideoX 有多强!

样例展示

首先我们生成一个骑马的宇航员,使用的提示词是“an astronaut riding a horse on Mars.”。

示例代码:

from diffsynth import ModelManager, save_video, VideoData, download_models, CogVideoPipeline
from diffsynth.extensions.RIFE import RIFEInterpolater
import torch, os
os.environ["TOKENIZERS_PARALLELISM"] = "True"
def text_to_video(model_manager, prompt, seed, output_path):
    pipe = CogVideoPipeline.from_model_manager(model_manager)
    torch.manual_seed(seed)
    video = pipe(
        prompt=prompt,
        height=480, width=720,
        cfg_scale=7.0, num_inference_steps=200
    )
    save_video(video, output_path, fps=8, quality=5)
download_models(["CogVideoX-5B", "RIFE"])
model_manager = ModelManager(torch_dtype=torch.bfloat16)
model_manager.load_models([
    "models/CogVideo/CogVideoX-5b/text_encoder",
    "models/CogVideo/CogVideoX-5b/transformer",
    "models/CogVideo/CogVideoX-5b/vae/diffusion_pytorch_model.safetensors",
    "models/RIFE/flownet.pkl",
])
# Example 1
text_to_video(model_manager, "an astronaut riding a horse on Mars.", 0, "1_video_1.mp4")

然后,我们使用视频生视频功能,把宇航员改成一个机器人,使用的提示词是“a white robot riding a horse on Mars.”。

def edit_video(model_manager, prompt, seed, input_path, output_path):
    pipe = CogVideoPipeline.from_model_manager(model_manager)
    input_video = VideoData(video_file=input_path)
    torch.manual_seed(seed)
    video = pipe(
        prompt=prompt,
        height=480, width=720,
        cfg_scale=7.0, num_inference_steps=200,
        input_video=input_video, denoising_strength=0.7
    )
    save_video(video, output_path, fps=8, quality=5)
edit_video(model_manager, "a white robot riding a horse on Mars.", 1, "1_video_1.mp4", "1_video_2.mp4")

视频的分辨率和帧率似乎不高,我们提高分辨率到 960x1440,再使用插帧技术,让视频变得丝滑流畅。

def self_upscale(model_manager, prompt, seed, input_path, output_path):
    pipe = CogVideoPipeline.from_model_manager(model_manager)
    input_video = VideoData(video_file=input_path, height=480*2, width=720*2).raw_data()
    torch.manual_seed(seed)
    video = pipe(
        prompt=prompt,
        height=480*2, width=720*2,
        cfg_scale=7.0, num_inference_steps=30,
        input_video=input_video, denoising_strength=0.4, tiled=True
    )
    save_video(video, output_path, fps=8, quality=7)
def interpolate_video(model_manager, input_path, output_path):
    rife = RIFEInterpolater.from_model_manager(model_manager)
    video = VideoData(video_file=input_path).raw_data()
    video = rife.interpolate(video, num_iter=2)
    save_video(video, output_path, fps=32, quality=5)
self_upscale(model_manager, "a white robot riding a horse on Mars.", 2, "1_video_2.mp4", "1_video_3.mp4")
interpolate_video(model_manager, "1_video_3.mp4", "1_video_4.mp4")

再来看另外一个例子。

首先我们生成一只小狗,使用的提示词是“a dog is running.”。

然后,我们使用视频生视频功能,把小狗的项圈改成蓝色,使用的提示词是“a dog with blue collar.”。

视频的分辨率和帧率似乎不高,我们提高分辨率到 960x1440,再使用插帧技术,让视频变得丝滑流畅。

原理解析

在基础的文生视频功能中,DiffSynth-Studio 沿用了 CogVideoX 原版的处理流程,但我们发现,迭代步数对于生成视频的质量影响非常大。在迭代步数比较少时,小狗的腿部动作会有些混乱,在上述样例中,我们把迭代步数加到了 200 步。

迭代 20 步

迭代 50 步

迭代 200 步

基于文生图模型的图生图技术已经很成熟了,根据类似的思路,DiffSynth-Studio 实现了基于文生视频模型的视频生视频技术。具体来说,就是对视频加噪到中间步骤,然后重新运行迭代过程的后半段,模型就会根据提示词对画面中的内容进行编辑。

此外,DiffSynth-Studio 还借鉴了 SD-WebUI 中的高分辨率修复技术,将其应用到了 CogVideoX 上,原理和图生图类似,用模型自身重新润色高分辨率的视频。值得注意的是,由于模型本身位置编码的固定性,高分辨率视频无法直接输入给模型,所以 DiffSynth-Studio 采用了 tile 处理方式,每次只会把画面中的一部分输入给模型进行处理。

最后,CogVideoX 目前只能生成 49 帧,经过测试发现它还无法像“扩图”一样“扩视频”,但我们可以用插帧模型进一步处理它生成的视频,提高视频的帧率。上述样例中使用的插帧模型是 RIFE(Real-Time Intermediate Flow Estimation),插帧两次都得到 193 帧。

最佳实践

下载并安装 DiffSynth-Studio:

git clone https://github.com/modelscope/DiffSynth-Studio.git
cd DiffSynth-Studio
pip install -e .

运行样例脚本(模型会自动下载):

python examples/video_synthesis/cogvideo_text_to_video.py

由于这个脚本中开启了高分辨率修复,所以目前只有 80G 显存的显卡可以运行全部流程。


相关文章
|
5月前
|
API UED 开发者
超实用技巧大放送:彻底革新你的WinForms应用,从流畅动画到丝滑交互设计,全面解析如何在保证性能的同时大幅提升用户体验,让软件操作变得赏心悦目不再是梦!
【8月更文挑战第31天】在Windows平台上,使用WinForms框架开发应用程序时,如何在保持性能的同时提升用户界面的吸引力和响应性是一个常见挑战。本文探讨了在不牺牲性能的前提下实现流畅动画与交互设计的最佳实践,包括使用BackgroundWorker处理耗时任务、利用Timer控件创建简单动画,以及使用Graphics类绘制自定义图形。通过具体示例代码展示了这些技术的应用,帮助开发者显著改善用户体验,使应用程序更加吸引人和易于使用。
89 0
|
8月前
|
缓存 Android开发 开发者
安卓系统优化:提升手机性能的秘诀
【5月更文挑战第31天】本文将探讨如何通过一系列简单的步骤和技巧,对安卓系统进行优化,以提升手机的性能。我们将从清理无用文件、管理后台应用、调整系统设置等方面入手,帮助你的安卓设备运行更加流畅。
|
机器学习/深度学习 算法
【OpenVI—视觉生产系列之视频插帧实战篇】几行代码,尽享流畅丝滑的视频观感
随着网络电视、手机等新媒体领域的快速发展,用户对于观看视频质量的要求也越来越高。当前市面上所广为传播的视频帧率大多仍然处于20~30fps,已经无法满足用户对于高清、流畅的体验追求。而视频插帧算法,能够有效实现多倍率的帧率提升,有效消除低帧率视频的卡顿感,让视频变得丝滑流畅。配合其它的视频增强算法,更是能够让低质量视频焕然一新,让观众享受到极致的播放和观看体验。
672 0
【OpenVI—视觉生产系列之视频插帧实战篇】几行代码,尽享流畅丝滑的视频观感
|
Web App开发 机器学习/深度学习 Windows
无广告,小体积,实用性拉满的5款软件
人类与99%的动物之间最大差别在于是否会运用工具,借助好的工具,能提升几倍的工作效率。
141 0
无广告,小体积,实用性拉满的5款软件
|
编解码 IDE 开发工具
【实测】用airtest自动化做手游的每日任务
【实测】用airtest自动化做手游的每日任务
【实测】用airtest自动化做手游的每日任务
|
小程序 Android开发 iOS开发
效率倍增!5款macOS下免费强大的剪切板增强工具
一年半以来,我介绍了很多Windows、Android、小程序、浏览器插件、VS Code插件、网页端工具,但是却没有忽略了macOS。现在,它来了!本文就来介绍6款让工作、学习效率倍增的剪切板增强工具!
效率倍增!5款macOS下免费强大的剪切板增强工具
|
Web App开发 搜索推荐 开发工具
超级实用!让你效率倍增的6款浏览器插件
浏览器插件具备内存占用小、使用频率高等特点,一款好用的浏览器插件能够极大的提高学习/办公效率,本文就来介绍6款让人不禁感叹相见恨晚的实用插件,文末有下载方式。
|
缓存 监控 数据可视化
如何用 GPU硬件层加速优化Android系统的游戏流畅度
作为一款VR实时操作游戏App,我们需要根据重力感应系统,实时监控手机的角度,并渲染出相应位置的VR图像,因此在不同 Android 设备之间,由于使用的芯片组和不同架构的GPU,游戏性能会因此受到影响。举例来说:游戏在 Galaxy S20+ 上可能以 60fps 的速度渲染,但它在HUAWEI P50 Pro上的表现可能与前者大相径庭。
如何用 GPU硬件层加速优化Android系统的游戏流畅度
|
编解码 移动开发 视频直播
直播平台源代码开发,支持全终端观看及提高开屏流畅度很重要
相信大家对直播软件已经是很熟悉了,毕竟直播软件已成为当下人们重要的娱乐渠道
直播平台源代码开发,支持全终端观看及提高开屏流畅度很重要

热门文章

最新文章