基于GA遗传优化的离散交通网络双层规划模型设计matlab仿真

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 该程序基于GA遗传优化设计了离散交通网络的双层规划模型,以路段收费情况的优化为核心,并通过一氧化碳排放量评估环境影响。在MATLAB2022a版本中进行了验证,显示了系统总出行时间和区域排放最小化的过程。上层模型采用多目标优化策略,下层则确保总阻抗最小,实现整体最优解。

1.程序功能描述
基于GA遗传优化的离散交通网络双层规划模型设计.优化输出路段1和路段2的收费情况收敛过程。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

6c4948041312f015238df7aced6f4ec7_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
5fa3aba749889615723a48c1f30fed90_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

3.核心程序

```while gen < MAXGEN;
rng(gen)
gen

  P1 = 0.9;
  P2 = 1-P1;

  FitnV=ranking(Objv);    

  Selch=select('sus',Chrom,FitnV);    
  Selch=recombin('xovsp', Selch,P1);   
  Selch=mut( Selch,P2);   
  phen1=bs2rv(Selch,FieldD);   
  for a=1:1:NIND  
      if  gen == 1
          Cost1(a) = Cost1_intial;       
          Cost2(a) = Cost2_intial;               
      else
          Cost1(a) = phen1(a,1);   
          Cost2(a) = phen1(a,2);   
      end

      %计算对应的目标值
      [errs,a1,a2,eas,tas,xa3] = func_obj(Cost1(a),Cost2(a));
      E               = errs;
      JJ(a,1)         = E;
  end 
  Objvsel      =(JJ+eps);    
  [Chrom,Objv] = reins(Chrom,Selch,1,1,Objv,Objvsel);   
  gen          = gen+1; 

  %保存参数收敛过程和误差收敛过程以及函数值拟合结论
  Cost1gen(gen) = mean(Cost1);
  Cost2gen(gen) = mean(Cost2); 
  F(gen)        = mean(JJ);
  if gen <=32
     F2(gen)        = mean(F(1:gen));
     Cost1gen2(gen) = mean(Cost1gen(1:gen));
     Cost2gen2(gen) = mean(Cost2gen(1:gen));
  else
     F2(gen)        = mean(F(gen-32:gen)); 
     Cost1gen2(gen) = mean(Cost1gen(gen-32:gen));
     Cost2gen2(gen) = mean(Cost2gen(gen-32:gen));
  end

end

Cost1f = Cost1gen(end);
Cost2f = Cost2gen(end);

figure;
plot(F2(2:end),'linewidth',2);
xlabel('迭代次数');
ylabel('上层目标函数');
grid on

figure;
plot(Cost1gen2(2:end),'r','linewidth',2);
hold on
plot(Cost2gen2(2:end),'b','linewidth',2);
xlabel('迭代次数');
ylabel('收费情况');
legend('路段1','路段2');
grid on

disp('流量');
eas
06_029m

```

4.本算法原理

  1. 使用一氧化碳作为路网车辆尾气排放的代表指标,计算公式如下:

348f4982997006eaa2537544f3b00b04_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

  1. 双层规划模型
    上层模型
    采用多目标模型,系统总出行时间最小,同时区域排放最小

2aacabdc1131f1bb546eead290dd9ec4_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.下层模型

采用固定需求的用户平衡(UE),总阻抗最小

2e951bebf1a4e6cbbf6f4632a790ab3b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
854a24e8f58d419272bead64f23f55ea_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

N——网络中节点的集合;

L——网络中路段的集合;

R——网络中出发地的集合;

S——网络中目的地的集合;

——出发地 和目的地 之间的所有径路的集合;

——出发地 和目的地 之间的OD交通量;

相关文章
|
10天前
|
传感器 算法 安全
【无人机】四旋翼飞行器控制、路径规划和轨迹优化(Matlab实现)
【无人机】四旋翼飞行器控制、路径规划和轨迹优化(Matlab实现)
|
10天前
|
机器学习/深度学习 算法 新能源
【优化调度】基于matlab粒子群算法求解水火电经济调度优化问题研究(Matlab代码实现)
【优化调度】基于matlab粒子群算法求解水火电经济调度优化问题研究(Matlab代码实现)
|
10天前
|
数据采集 算法 调度
【电力系统】基于matlab虚拟电厂内部负荷调度优化模型(matlab+yalmip+cplex)(Matlab代码实现)
【电力系统】基于matlab虚拟电厂内部负荷调度优化模型(matlab+yalmip+cplex)(Matlab代码实现)
|
10天前
|
存储 算法 安全
【无人机】基于灰狼优化算法的无人机路径规划问题研究(Matlab代码实现)
【无人机】基于灰狼优化算法的无人机路径规划问题研究(Matlab代码实现)
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
|
4月前
|
算法 数据安全/隐私保护
基于GA遗传算法的悬索桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现悬索桥静载试验车辆最优布载的MATLAB仿真(2022A版)。目标是自动化确定车辆位置,使加载效率ηq满足0.95≤ηq≤1.05且尽量接近1,同时减少车辆数量与布载时间。核心原理通过优化模型平衡最小车辆使用与ηq接近1的目标,并考虑桥梁载荷、车辆间距等约束条件。测试结果展示布载方案的有效性,适用于悬索桥承载能力评估及性能检测场景。
|
4月前
|
算法 JavaScript 数据安全/隐私保护
基于GA遗传优化的最优阈值计算认知异构网络(CHN)能量检测算法matlab仿真
本内容介绍了一种基于GA遗传优化的阈值计算方法在认知异构网络(CHN)中的应用。通过Matlab2022a实现算法,完整代码含中文注释与操作视频。能量检测算法用于感知主用户信号,其性能依赖检测阈值。传统固定阈值方法易受噪声影响,而GA算法通过模拟生物进化,在复杂环境中自动优化阈值,提高频谱感知准确性,增强CHN的通信效率与资源利用率。预览效果无水印,核心程序部分展示,适合研究频谱感知与优化算法的学者参考。
|
11天前
|
算法 Java 调度
【车间调度】基于GA、PSO、SA、ACO、TS优化算法的车间调度比较研究(Matlab代码实现)
【车间调度】基于GA、PSO、SA、ACO、TS优化算法的车间调度比较研究(Matlab代码实现)
|
4月前
|
传感器 算法 数据安全/隐私保护
基于GA遗传优化的三维空间WSN网络最优节点部署算法matlab仿真
本程序基于遗传算法(GA)优化三维空间无线传感网络(WSN)的节点部署,通过MATLAB2022A实现仿真。算法旨在以最少的节点实现最大覆盖度,综合考虑空间覆盖、连通性、能耗管理及成本控制等关键问题。核心思想包括染色体编码节点位置、适应度函数评估性能,并采用网格填充法近似计算覆盖率。该方法可显著提升WSN在三维空间中的部署效率与经济性,为实际应用提供有力支持。
|
3月前
|
存储 供应链 数据安全/隐私保护
基于GA遗传优化的风光储微电网削峰填谷能量管理系统matlab仿真
本课题基于MATLAB2022a开发,利用遗传算法(GA)优化风光储微电网的削峰填谷能量管理。系统通过优化风力发电、光伏发电及储能系统的充放电策略,实现电力供需平衡,降低运行成本,提高稳定性与经济效益。仿真结果无水印展示,核心程序涵盖染色体编码、适应度计算、选择、交叉、变异等遗传操作,最终输出优化后的功率分配方案。削峰填谷技术可减少电网压力,提升可再生能源利用率,延长储能设备寿命,为微电网经济高效运行提供支持。