大语言模型应用框架介绍

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 大型语言模型(LLM)是在大规模文本数据上训练而成,用于执行自然语言处理任务的深度学习模型,如文本分类、问答、总结和生成等。尽管LLM如ChatGPT、GPT-3、LaMDA等备受关注,但其泛化能力和特定任务优化方面仍有限制。为此,应用框架如LangChain应运而生,提供了更优化的解决方案。学习LLM应用框架可循序渐进,掌握其应用场景及常见框架,构建具体应用。

简介

大语言模型的英文全称为:Large Language Model,缩写为 LLM,也被称为大型语言模型,主要指的是在大规模文本语料上训练、包含百亿级别参数的语言模型,它用来做自然语言相关任务的深度学习模型。

自然语言的相关任务简单理解为:给到模型一个文本输入,经过训练的模型会给出相应的输出文本。通常被用来解决常见的语言问题,如:文本分类、问答、总结和文本生成等。

image.png

大语言模型的局限性

随着 ChatGPT 的出现,LLM(大型语言模型)的开发受到越来越多的关注,吸引了众多企业的参与,包括 OpenAI 的 GPT-3、Google 的 LaMDA 和 PaLM、以及清华大学的 GLM 等。尽管 LLM 的强大潜力引发了广泛兴趣,但直接调用这些大模型进行编程也暴露出一些局限性,例如:

  • 泛化能力限制:尽管 LLM 拥有庞大的训练数据集,但仍难以完全理解用户输入的语境和上下文,导致输出结果可能不尽人意。
  • 缺乏特定任务的优化:LLM 通常是在大规模文本上预训练的,并未针对特定任务进行优化,因此在特定任务上的性能可能不如专门优化的模型。

大语言模型应用框架

针对上述限制,直接调用大语言模型似乎并不是最佳选择,因此出现了基于大语言模型的应用框架,旨在解决这些问题。

大语言模型的应用框架通常指的是使用已有的大模型进行各种自然语言处理任务时所采用的软件架构或工具集,这些应用框架提供了一种便捷的方式,使得开发者能够利用大语言模型的强大能力解决特定的问题。

对比点 LangChain 其他框架
开放文档 丰富的示例代码和教程 可能存在不完善或难以理解的情况
社区活跃 活跃的社区支持和交流 社区活跃度较低
更新维护频率 持续的更新和改进 更新维护频率不稳定

目前有多种大语言模型的应用框架,比如 LangChain 、AutoGPT 等其他大语言模型。而 LangChain 的社区生态、更新速度、热度包括融资情况都占据了不小的优势。包括 LangChain 的设计理念,兼具易用性(LCEL)与很强的拓展性,都成为学习大语言模型应用框架的首选

如何学习大语言模型应用框架

学习大语言模型应用框架应当循序渐进,所以本课程主要分为 5 个模块,从 L1 ~ L5,由浅入深带大家进行学习。

image.png

总结

  1. 了解什么是大语言模型应用框架。
  2. 了解大语言模型应用框架的应用场景。
  3. 了解常见的大语言模型应用框架。
  4. 了解大语言模型的学习路线。
相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
机器学习/深度学习 存储 机器人
LLM系列 | 19: ChatGPT应用框架LangChain实践速成
本文以实践的方式将OpenAI接口、ChatOpenAI接口、Prompt模板、Chain、Agent、Memory这几个LangChain核心模块串起来,从而希望能够让小伙伴们快速地了解LangChain的使用。
|
21天前
|
自然语言处理 资源调度 并行计算
从本地部署到企业级服务:十种主流LLM推理框架的技术介绍与对比
本文深入探讨了十种主流的大语言模型(LLM)服务引擎和工具,涵盖从轻量级本地部署到高性能企业级解决方案,详细分析了它们的技术特点、优势及局限性,旨在为研究人员和工程团队提供适合不同应用场景的技术方案。内容涉及WebLLM、LM Studio、Ollama、vLLM、LightLLM、OpenLLM、HuggingFace TGI、GPT4ALL、llama.cpp及Triton Inference Server与TensorRT-LLM等。
97 7
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
【LLM】能够运行在移动端的轻量级大语言模型Gemma实践
【4月更文挑战第12天】可以运行在移动端的开源大语言模型Gemma模型介绍
324 0
|
4月前
|
人工智能 自然语言处理 Swift
"轻量级微调推理框架SWIFT:大模型时代的速度革命,让你秒变AI部署高手!"
【8月更文挑战第17天】随着AI技术的发展,大模型如GPT-3和BERT引领风潮,但其部署与推理速度面临挑战。为此,魔搭社区推出了SWIFT(Simple Weight-Integrated Fine-Tuning)框架,它采用轻量级微调技术,实现模型参数压缩与加速,确保大模型能在移动端和边缘设备上高效运行。SWIFT具备四大特点:创新微调方法减少训练参数;内置优化策略提高推理速度;跨平台支持便于部署;兼容主流预训练模型。通过示例可见,从加载预训练模型到模型的微调、评估及导出,SWIFT简化了工作流程,降低了大模型的应用门槛,促进了AI技术的实际应用。
517 3
|
4月前
|
SQL 监控 测试技术
|
4月前
|
SQL 人工智能 SEO
|
机器学习/深度学习 人工智能 自然语言处理
简单易用高性能!一文了解开源迁移学习框架EasyTransfer
近日,阿里云正式开源了深度迁移学习框架EasyTransfer,这是业界首个面向NLP场景的深度迁移学习框架。该框架由阿里云机器学习PAI团队研发,让自然语言处理场景的模型预训练和迁移学习开发与部署更加简单和高效。本文将对EasyTransfer进行深度解读。开源地址:https://github.com/alibaba/EasyTransfer
4549 0
简单易用高性能!一文了解开源迁移学习框架EasyTransfer
|
6月前
|
机器学习/深度学习 自然语言处理 API
大模型应用框架-LangChain(一)
LangChain由 Harrison Chase 创建于2022年10月,它是围绕LLMs(大语言模型)建立的一个框架,LLMs使用机器学习算法和海量数据来分析和理解自然语言,GPT3.5、GPT4是LLMs最先进的代表,国内百度的文心一言、阿里的通义千问也属于LLMs。LangChain自身并不开发LLMs,它的核心理念是为各种LLMs实现通用的接口,把LLMs相关的组件“链接”在一起,简化LLMs应用的开发难度,方便开发者快速地开发复杂的LLMs应用。 LangChain目前有两个语言的实现:python、nodejs。
|
6月前
|
机器学习/深度学习 存储 前端开发
大模型应用框架-LangChain(二)
LangChain由 Harrison Chase 创建于2022年10月,它是围绕LLMs(大语言模型)建立的一个框架,LLMs使用机器学习算法和海量数据来分析和理解自然语言,GPT3.5、GPT4是LLMs最先进的代表,国内百度的文心一言、阿里的通义千问也属于LLMs。LangChain自身并不开发LLMs,它的核心理念是为各种LLMs实现通用的接口,把LLMs相关的组件“链接”在一起,简化LLMs应用的开发难度,方便开发者快速地开发复杂的LLMs应用。 LangChain目前有两个语言的实现:python、nodejs。
|
7月前
|
人工智能
【AI大模型应用开发】【LangChain系列】实战案例5:用LangChain实现灵活的Agents+RAG,该查时查,不该查时就别查
【AI大模型应用开发】【LangChain系列】实战案例5:用LangChain实现灵活的Agents+RAG,该查时查,不该查时就别查
394 0
下一篇
DataWorks