Mistral 大语言模型

简介: Mistral AI 是一家由 Meta Platforms 和 Google DeepMind 前员工创立的法国人工智能公司,成立于 2023 年 4 月,并在同年 10 月筹集了 3.85 亿欧元,估值超过 20 亿美元。其愿景是通过创新打造开放、高效、有用且值得信赖的人工智能模型。Mistral AI 提供 Mistral-7B 大型语言模型,参数达 70 亿,在多个基准测试中优于 Llama 2 13B 和 Llama 1 34B。此外,还推出了开放权重的 Mixtral 大语言模型,性能卓越,推理速度提升了 6 倍。

Mistral AI

Mistral AI team

Mistral AI 是一家销售人工智能产品的法国公司。它由 Meta Platforms 和 Google DeepMind 的前员工于 2023 年 4 月创立。该公司于 2023 年 10 月筹集了 3.85 亿欧元,2023 年 12 月估值超过 20 亿美元

image.png

Mistral.AI 愿景与使命

我们是一个具有高科学标准的小型创意团队。我们通过突破性的创新打造开放、高效、有用且值得信赖的人工智能模型。我们的使命是让前沿人工智能无处不在,为所有建设者提供量身定制的人工智能。这需要强烈的独立性,对开放、便携和可定制解决方案的坚定承诺,以及对在有限时间内交付最先进技术的高度关注。

image.png

在线 Chat 服务 Le Chat

image.png

image.png

开源大语言模型 Mistral Mixtral

image.png

image.png

Mistral 大语言模型

Mistral-7B

  • Mistral-7B 大型语言模型 (LLM) 是一个预训练的生成文本模型,具有 70 亿个参数。
  • 在所有基准测试中均优于 Llama 2 13B
  • 在许多基准测试中均优于 Llama 1 34B
  • 接近 CodeLlama 7B 的代码性能,同时保持良好的英语任务表现
  • 使用分组查询注意力 (GQA) 进行更快的推理
  • 使用滑动窗口注意 (SWA) 以较小的成本处理较长的序列

mistral 与 llama 的对比

image.png

基于 Hugging Face Transformers 使用 mistral


## Use a pipeline as a high-level helper
from transformers import pipeline

def test_mistral():
    pipe = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.2")
    pipe("请为google编写web自动化测试用例,使用pytest page object设计模式,断言使用hamcrest")

使用 langchain 调用 mistral


def test_mistral():
    llm = Ollama(model="mistral", base_url="http://localhost:11434")
    r = llm.invoke('请为google编写web自动化测试用例,使用pytest page object设计模式,断言使用hamcrest')
    debug(r)

Mixtral 大语言模型

Mixtral 大语言模型介绍

这是一种具有开放权重的高质量稀疏专家混合模型 (SMoE)。根据 Apache 2.0 许可。Mixtral 在大多数基准测试中都优于 Llama 2 70B,推理速度提高了 6 倍。它是最强大的开放权重模型,具有宽松的许可证,也是成本/性能权衡方面的最佳模型。特别是,它在大多数标准基准测试中匹配或优于 GPT3.5。

在这里插入图片描述

Mixtral 的特点

  • 可以优雅地处理 32k 令牌的上下文。
  • 可以处理英语、法语、意大利语、德语和西班牙语。
  • 在代码生成方面表现出强大的性能。

基于 Hugging Face Transformers 使用 mixtral


## Use a pipeline as a high-level helper
from transformers import pipeline

def test_mixtral():
    pipe = pipeline("text-generation", model="mistralai/Mixtral-8x7B-Instruct-v0.1")
    pipe("请为google编写web自动化测试用例,使用pytest page object设计模式,断言使用hamcrest"))

使用 langchain 调用 mixtral


def test_mixtral():
    llm = Ollama(model="mixtral", base_url="http://localhost:11434")
    r = llm.invoke('请为google编写web自动化测试用例,使用pytest page object设计模式,断言使用hamcrest')
    debug(r)
相关文章
|
7月前
|
机器学习/深度学习 自然语言处理 NoSQL
基于大语言模型的应用
大语言模型(BLM)在NLP领域广泛应用,能理解和生成准确答案,适用于文本分类、文本生成、信息检索和问答系统。深度学习技术如TensorFlow、PyTorch助力文本分类,BLM提升信息检索效率,问答系统依赖BLM的语义理解。悦数图数据库利用图技术增强BLM,提高回答准确度,降低企业应用成本,推动智能化发展。
|
7月前
|
机器学习/深度学习 算法 测试技术
使用ORPO微调Llama 3
ORPO是一种结合监督微调和偏好对齐的新型微调技术,旨在减少训练大型语言模型所需资源和时间。通过在一个综合训练过程中结合这两种方法,ORPO优化了语言模型的目标,强化了对首选响应的奖励,弱化对不期望回答的惩罚。实验证明ORPO在不同模型和基准上优于其他对齐方法。本文使用Llama 3 8b模型测试ORPO,结果显示即使只微调1000条数据一个epoch,性能也有所提升,证实了ORPO的有效性。完整代码和更多细节可在相关链接中找到。
366 10
|
7月前
|
人工智能 自然语言处理 物联网
Predibase发布25个LoRA,超越GPT-4的Mistral模型
【2月更文挑战第24天】Predibase发布25个LoRA,超越GPT-4的Mistral模型
125 2
Predibase发布25个LoRA,超越GPT-4的Mistral模型
|
7月前
|
机器学习/深度学习 自然语言处理 算法
预训练语言模型是什么?
【2月更文挑战第13天】预训练语言模型是什么?
78 2
预训练语言模型是什么?
|
4月前
|
机器学习/深度学习 存储 人工智能
2024年大语言模型的微调
2024年大语言模型的微调
86 1
2024年大语言模型的微调
|
1月前
|
机器学习/深度学习 自然语言处理
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
微调大语言模型知识
在自然语言处理领域,大语言模型(Large Language Models, LLMs)展示了卓越的能力。了解这些模型的特点及微调方法可以帮助更好地应用它们。
44 5
|
4月前
|
数据采集 JSON 自然语言处理
打造领域专属的大语言模型
大模型虽擅长自然语言处理,但在专业领域常表现不足。微调通过利用特定领域的数据,在已有大模型基础上进一步训练,能显著提升模型的专业表现,同时有效控制成本。微调前需确定领域、收集并格式化数据;过程中涉及数据上传、模型训练及状态监控;最后通过验证测试评估效果。此法既经济又高效,特别适合中小型企业及个人用户。
|
7月前
|
自然语言处理 C++
GPT4 vs Llama,大模型训练的坑
训练大模型,总觉得效果哪里不对,查了三天,终于发现了原因
136 0
|
机器学习/深度学习 存储 JSON
使用QLoRa微调Llama 2
上篇文章我们介绍了Llama 2的量化和部署,本篇文章将介绍使用PEFT库和QLoRa方法对Llama 27b预训练模型进行微调。我们将使用自定义数据集来构建情感分析模型。只有可以对数据进行微调我们才可以将这种大模型进行符合我们数据集的定制化。
734 3
下一篇
DataWorks