Sentieon 应用教程 | 使用CNVscope进行CNV检测分析

简介: CNVscope是Sentieon推出的一款基于机器学习的全基因组CNV分析检测模块。该模块主要用于检测大于5kb的拷贝数增加或缺失,方法是通过分析reads的深度信息,并结合断点检测等其他特征进行拷贝数判断。

背景介绍

CNV检测已成为全基因组分析的常规内容,并显著提升了阳性诊断率。然而,由于实验室水平和所使用软件的差异,目前仍难以全面、准确地覆盖CNV的检测与细节分析。尤其在数据分析环节,目前尚无开源软件能够在性能优越的同时,全面解决这一问题。以流行的CNVnator为例,这是一款基于Read Depth(RD)原理的拷贝数变异检测软件,主要用于全基因组数据分析。CNVnator不仅能在人群中进行拷贝数变异检测和基因分型,还能根据需求鉴定一些非典型CNV。

微信图片_20240830180121.jpg

总体而言,CNVnator具备较高的灵敏度、较低的错误发现率、并且其断点检测分辨率较高。然而,作为一款经典软件,CNVnator在应对现今多平台测序数据和新一代参考基因组等最新数据类型时,已表现出一定的局限性。

1.适用场景

CNVscope是Sentieon推出的一款基于机器学习的全基因组CNV分析检测模块。该模块主要用于检测大于5kb的拷贝数增加或缺失,方法是通过分析reads的深度信息,并结合断点检测等其他特征进行拷贝数判断。

2.环境必备

3.分析流程

运行两个独立的命令来进行 CNV 检测和应用机器学习模型。输入的BAM文件应该来自已经完成比对和去重复的流程。

sentieon driver -t NUMBER_THREADS -r REFERENCE -i DEDUPED_BAM \ --algo CNVscope --model SentieonIlluminaWGS2.2.bundle/cnv.model TMP_VARIANT_VCF

sentieon driver -t NUMBER_THREADS -r REFERENCE --algo CNVModelApply \ --model SentieonIlluminaWGS2.2.bundle/cnv.model -v TMP_VARIANT_VCF VARIANT_VCF

注意:使用同一个模型进行CNVscope和CNVModelApply操作很重要,如果使用不同的模型,CNVModelApply计算会报错。

4.参数说明

以下是输入参数说明:

  • NUMBER_THREADS:计算中将使用的计算机线程数。我们建议该数量不要超过您系统中可用的计算核心数。
  • REFERENCE:参考FASTA文件的位置。您应确保该参考与映射阶段使用的参考相同。
  • DEDUPED_BAM:输入BAM文件的位置。
  • TMP_VARIANT_VCF:CNVscope变异调用输出的位置和文件名。这是一个临时文件。
  • VARIANT_VCF:变异调用输出的位置和文件名。将创建一个相应的索引文件。该工具将使用.gz扩展名输出压缩文件。

5.结果说明

最终输出的VCF文件使用CN注释来表示CNVscope机器学习模型调用的每个区域的拷贝数状态。CNVscope调用的可能拷贝数状态从0到4,其中CN=4表示拷贝数状态等于或大于4。

附录:研发细节

在CNVscope的开发过程中,建立新一代的CNV真集用于训练和测试是最为关键的一步。目前常用的CNV真值集主要来自GIAB的HG002项目和千人基因组计划。然而,由于这些真值集依赖于早期的短读长技术,特别是在低复杂度区域的准确性存在一定问题。

随着测序技术的进步,尤其是长读长测序的发展,使得染色体级别的全基因组组装成为可能。例如,HG002 T2T(端到端)联盟最近宣布完成了HG002所有46条染色体的完整组装,使得样本的结构变异(SV)表征更加准确。同样,Human Pangenome Reference Consortium(人类泛基因组参考联盟)也发布了多个高质量的组装结果,为业内研究者开发最新的分析工具提供了基础。

Sentieon团队在此次开发中,主要采用了最新的HG002 T2T真集以及泛基因组项目中的15个样本。这些真集利用了第三代测序数据,大大提升了结构变异检测的准确性。我们从这些真集中提取了超过5kb的DUP(重复)和DEL(缺失)变异,作为CNVscope开发的真集数据。其中,11个图形基因组样本作为训练集,其余4个样本和T2T数据作为测试集。所有数据均来自约30x深度的全基因组测序。

Image.jpg

为展示准确度,我们将CNVscope与先前提到的CNVnator (v0.4.1) 和Illumina开发的DRAGEN CNV (v4.2) 在不同数据集上进行了逐一对比。

Image (1).jpg

图1 拷贝数重复事件


Image (2).jpg

图2 拷贝数缺失事件

从结果来看,Sentieon CNVscope 在WGS中的表现相较于现有的CNV工具,展现出极高的准确性(F1值)。目前,CNVscope正处于持续迭代阶段,当前主要聚焦于检测大于5kb的胚系WGS事件,而小于5kb的复制和缺失则由DNAscope的结构变异检测模块处理。

未来,CNVscope还将推出适用于外显子组测序(WES)数据和体细胞CNV的分析流程

目录
相关文章
|
4月前
|
机器学习/深度学习 人工智能 算法
基于YOLOv8的钢铁缺陷实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
基于YOLOv8的钢铁缺陷实时检测系统,通过1800张图片训练,开发了带GUI界面的检测系统,支持图片、视频和摄像头实时检测,提高生产效率和产品质量。系统基于Python和Pyside6开发,具备模型权重导入、检测置信度调节等功能。项目代码、数据集可通过特定链接获取。
115 1
基于YOLOv8的钢铁缺陷实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
|
4月前
|
机器学习/深度学习 人工智能 算法
基于YOLOv10的无人机巡航小目标实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
基于YOLOv10的无人机巡航小目标实时检测系统,通过7444张无人机场景训练图片,训练出能检测9类目标的模型,并开发了带GUI界面的系统,支持图片、视频和摄像头实时检测,具备背景和标题更换、模型选择、检测信息展示等功能。
532 0
基于YOLOv10的无人机巡航小目标实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
|
4月前
|
机器学习/深度学习 人工智能 算法
基于YOLOv8的人员抽烟实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
基于YOLOv8的人员抽烟实时检测系统,旨在通过2472张图片训练出有效模型,维护无烟环境,预防火灾,保护公众健康。系统支持图片、视频和摄像头检测,具备GUI界面,易于操作。使用Python和Pyside6开发,具备模型权重导入、检测置信度调节等功能。
136 1
基于YOLOv8的人员抽烟实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
|
4月前
|
机器学习/深度学习 人工智能 算法
基于YOLOv8的火焰烟雾实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
基于YOLOv8的火焰烟雾实时检测系统,使用6744张图片训练有效模型,开发了带GUI界面的系统,支持图片、视频和摄像头实时检测,具备模型权重导入、检测置信度调节等功能,并提供项目完整代码和数据集。
394 1
基于YOLOv8的火焰烟雾实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
|
4月前
|
机器学习/深度学习 人工智能 算法
基于YOLOv8的工业安全帽实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
基于YOLOv8的工业安全帽实时检测系统,通过7581张图片训练,实现工作场所安全帽佩戴检测,降低工伤事故。系统支持图片、视频和摄像头实时检测,具备GUI界面,易于操作。使用Python和Pyside6开发,提供模型训练、评估和推理功能。
287 1
基于YOLOv8的工业安全帽实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
|
4月前
|
人工智能 算法 安全
基于YOLOv8的交通车辆实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
基于YOLOv8的交通车辆实时检测系统,使用5830张图片训练出有效模型,开发了Python和Pyside6的GUI界面系统,支持图片、视频和摄像头实时检测,具备模型权重导入、检测置信度调节等功能,旨在提升道路安全和改善交通管理。
163 1
基于YOLOv8的交通车辆实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
|
4月前
|
机器学习/深度学习 人工智能 算法
基于YOLOv8的人员跌倒实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
本文介绍了基于YOLOv8算法的人员跌倒实时检测系统,通过4978张图片训练出有效模型,并开发了带GUI界面的系统,支持图片、视频和摄像头实时检测,具备更换背景、标题,调节检测置信度等功能。
227 0
基于YOLOv8的人员跌倒实时检测系统【训练和系统源码+Pyside6+数据集+包运行】
|
6月前
|
数据采集 机器学习/深度学习 算法
【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】
【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】
116 1
|
7月前
|
存储 算法 Shell
Sentieon | 应用教程:Sentieon分布模式
本文档描述了如何利用Sentieon®基因组学工具的分片能力将DNAseq®流程分布到多台服务器上;将其他流程(如TNseq®)进行分布遵循相同原则,因为所有Sentieon®基因组学工具都具有相同的内置分布式处理能力。这种分布的目标是为了减少流程的总运行时间,以更快地生成结果;然而,这种分布也会带来一些额外的开销,使计算成本增加。
99 2
|
8月前
|
机器学习/深度学习 算法 安全
基于YOLOv8深度学习的危险区域人员闯入检测与报警系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、区域闯入
基于YOLOv8深度学习的危险区域人员闯入检测与报警系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、区域闯入

相关实验场景

更多