AI计算机视觉笔记十二:基于 LeNet5 的手写数字识别及训练

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: 本文档介绍了如何使用PyTorch框架复现经典的LeNet5模型,并通过MNIST数据集进行训练与测试。首先,创建虚拟环境并安装所需库,接着下载MNIST数据集。训练部分涉及四个主要文件:`LeNet5.py`、`myDatast.py`、`readMnist.py` 和 `train.py`。通过这些文件搭建模型并完成训练过程。最后,通过测试脚本验证模型准确性,结果显示准确率达到0.986,满足预期需求。文档还提供了详细的环境配置和代码实现细节。

一、介绍

pytorch复现lenet5模型,并检测自己手写的数字图片。

利用torch框架搭建模型相对比较简单,但是也会遇到很多问题,网上资料很多,搭建模型的方法大同小异,在我尝试了自己搭建搭建出来模型,无论是训练还是检测都会遇到很多的问题,像这种自己遇到的问题,请教别人也没有用。原本使用的是github上的一份代码来复现,环境搭建完成后,才发现要有GPU,而我搭建是使用CPU,失败告终,为了复现,租用了AutoDL平台,在次搭建,这里记录GPU下的操作,CPU版本需要修改源码,自行修改,我的目的是在要训练自己的模型并在RK3568上部署,所以先训练并测试好。为后续部署作基础。

二、环境

image.png

三、搭建

1、创建虚拟环境

conda create -n LeNet5_env python==3.8

2、安装pytorch

Previous PyTorch Versions | PyTorch

根据官方PyTorch,安装pytorch,使用的是CPU版本,其他版本自行安装,安装命令:

pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
 -i https://pypi.tuna.tsinghua.edu.cn/simple

还需要安装一些其他的库

pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple

3、数据集下载

http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz

直接把上面地址复制到网页上,就只可以下载

下载后保存到data/MNIST/raw目录下

image.png

四、训练代码

训练模型有四个文件分别为:LeNet5.py;myDatast.py;readMnist.py;train.py

文件LeNet5.py是网络层模型

train.py

import torch
from torch.autograd import Variable
import torch.nn as nn
from torch.utils.data import DataLoader
from readMnist import *
from myDatast import Mnist
from LeNet5 import LeNet5

train_images = load_train_images()
train_labels = load_train_labels()

trainData = Mnist(train_images, train_labels)
train_data = DataLoader(dataset=trainData, batch_size=1, shuffle=True)

lenet5 = LeNet5()
lenet5.cuda()

lossFun = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(params=lenet5.parameters(), lr=1e-4)

Epochs = 100
L = len(train_data)

for epoch in range(Epochs):
    for i, (img, id) in enumerate(train_data):

        img = img.float()
        id = id.float()

        img = img.cuda()
        id = id.cuda()

        img = Variable(img, requires_grad=True)
        id = Variable(id, requires_grad=True)

        Output = lenet5.forward(img)
        loss = lossFun(Output, id.long())

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        iter = epoch * L + i + 1
        if iter % 100 == 0:
            print('epoch:{},iter:{},loss:{:.6f}'.format(epoch + 1, iter, loss))

    torch.save(lenet5.state_dict(), 'lenet5.pth')

LeNet5.py

import torch.nn as nn


class LeNet5(nn.Module):
    def __init__(self):
        super(LeNet5, self).__init__()

        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5),
            nn.Sigmoid(),
            nn.MaxPool2d(kernel_size=2, stride=2)
        )

        self.conv2 = nn.Sequential(
            nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5),
            nn.Sigmoid(),
            nn.MaxPool2d(kernel_size=2, stride=2)
        )

        self.fc1 = nn.Sequential(
            nn.Linear(in_features=16 * 4 * 4, out_features=120),
            nn.Sigmoid()
        )

        self.fc2 = nn.Sequential(
            nn.Linear(in_features=120, out_features=84),
            nn.Sigmoid()
        )

        self.fc3 = nn.Linear(in_features=84, out_features=10)

    def forward(self, img):
        img = self.conv1.forward(img)
        img = self.conv2.forward(img)

        img = img.view(img.size()[0], -1)

        img = self.fc1.forward(img)
        img = self.fc2.forward(img)
        img = self.fc3.forward(img)

        return img

readMnist.py

from torch.utils.data import Dataset
from torchvision import transforms
import numpy as np


class Mnist(Dataset):
    def __init__(self, dataset, label):
        self.dataset = dataset
        self.label = label
        self.len = len(self.label)
        self.transforms = transforms.Compose([transforms.ToTensor() , transforms.Normalize(mean=[0.5], std=[0.5])])

    def __len__(self):
        return self.len

    def __getitem__(self, item):
        img = self.dataset[item]
        img_id = self.label[item]

        img = np.transpose(img,(1,2,0))
        img = self.transforms(img)

        return img, img_id

readMnist.py

import numpy as np
import struct
import matplotlib.pyplot as plt
import cv2

fpath = 'G:/enpei_Project_Code/21_LeNet5/LeNet5-master/myLeNet5/data/MNIST/raw/'

# 训练集文件
train_images_idx3_ubyte_file = fpath + 'train-images-idx3-ubyte'
# 训练集标签文件
train_labels_idx1_ubyte_file = fpath + 'train-labels-idx1-ubyte'

# 测试集文件
test_images_idx3_ubyte_file = fpath + 't10k-images-idx3-ubyte'
# 测试集标签文件
test_labels_idx1_ubyte_file = fpath + 't10k-labels-idx1-ubyte'


def decode_idx3_ubyte(idx3_ubyte_file):
    """
    解析idx3文件的通用函数
    :param idx3_ubyte_file: idx3文件路径
    :return: 数据集
    """
    # 读取二进制数据
    bin_data = open(idx3_ubyte_file, 'rb').read()

    # 解析文件头信息,依次为魔数、图片数量、每张图片高、每张图片宽
    offset = 0
    fmt_header = '>iiii'  # 因为数据结构中前4行的数据类型都是32位整型,所以采用i格式,但我们需要读取前4行数据,所以需要4个i。我们后面会看到标签集中,只使用2个ii。
    magic_number, num_images, num_rows, num_cols = struct.unpack_from(fmt_header, bin_data, offset)
    print('魔数:%d, 图片数量: %d张, 图片大小: %d*%d' % (magic_number, num_images, num_rows, num_cols))

    # 解析数据集
    image_size = num_rows * num_cols
    offset += struct.calcsize(fmt_header)  # 获得数据在缓存中的指针位置,从前面介绍的数据结构可以看出,读取了前4行之后,指针位置(即偏移位置offset)指向0016。
    print(offset)
    fmt_image = '>' + str(
        image_size) + 'B'  # 图像数据像素值的类型为unsigned char型,对应的format格式为B。这里还有加上图像大小784,是为了读取784个B格式数据,如果没有则只会读取一个值(即一副图像中的一个像素值)
    print(fmt_image, offset, struct.calcsize(fmt_image))
    images = np.empty((num_images, 1, num_rows, num_cols))
    # plt.figure()
    for i in range(num_images):
        if (i + 1) % 10000 == 0:
            print('已解析 %d' % (i + 1) + '张')
            print(offset)
        images[i] = np.array(struct.unpack_from(fmt_image, bin_data, offset)).reshape((1, num_rows, num_cols))
        # print(images[i])
        offset += struct.calcsize(fmt_image)
    #        plt.imshow(images[i],'gray')
    #        plt.pause(0.00001)
    #        plt.show()
    # plt.show()

    return images


def decode_idx1_ubyte(idx1_ubyte_file):
    """
    解析idx1文件的通用函数
    :param idx1_ubyte_file: idx1文件路径
    :return: 数据集
    """
    # 读取二进制数据
    bin_data = open(idx1_ubyte_file, 'rb').read()

    # 解析文件头信息,依次为魔数和标签数
    offset = 0
    fmt_header = '>ii'
    magic_number, num_images = struct.unpack_from(fmt_header, bin_data, offset)
    print('魔数:%d, 图片数量: %d张' % (magic_number, num_images))

    # 解析数据集
    offset += struct.calcsize(fmt_header)
    fmt_image = '>B'
    labels = np.empty(num_images)
    for i in range(num_images):
        if (i + 1) % 10000 == 0:
            print('已解析 %d' % (i + 1) + '张')
        labels[i] = struct.unpack_from(fmt_image, bin_data, offset)[0]
        offset += struct.calcsize(fmt_image)
    return labels


def load_train_images(idx_ubyte_file=train_images_idx3_ubyte_file):
    """
    TRAINING SET IMAGE FILE (train-images-idx3-ubyte):
    [offset] [type]          [value]          [description]
    0000     32 bit integer  0x00000803(2051) magic number
    0004     32 bit integer  60000            number of images
    0008     32 bit integer  28               number of rows
    0012     32 bit integer  28               number of columns
    0016     unsigned byte   ??               pixel
    0017     unsigned byte   ??               pixel
    ........
    xxxx     unsigned byte   ??               pixel
    Pixels are organized row-wise. Pixel values are 0 to 255. 0 means background (white), 255 means foreground (black).
    :param idx_ubyte_file: idx文件路径
    :return: n*row*col维np.array对象,n为图片数量
    """
    return decode_idx3_ubyte(idx_ubyte_file)


def load_train_labels(idx_ubyte_file=train_labels_idx1_ubyte_file):
    """
    TRAINING SET LABEL FILE (train-labels-idx1-ubyte):
    [offset] [type]          [value]          [description]
    0000     32 bit integer  0x00000801(2049) magic number (MSB first)
    0004     32 bit integer  60000            number of items
    0008     unsigned byte   ??               label
    0009     unsigned byte   ??               label
    ........
    xxxx     unsigned byte   ??               label
    The labels values are 0 to 9.
    :param idx_ubyte_file: idx文件路径
    :return: n*1维np.array对象,n为图片数量
    """
    return decode_idx1_ubyte(idx_ubyte_file)


def load_test_images(idx_ubyte_file=test_images_idx3_ubyte_file):
    """
    TEST SET IMAGE FILE (t10k-images-idx3-ubyte):
    [offset] [type]          [value]          [description]
    0000     32 bit integer  0x00000803(2051) magic number
    0004     32 bit integer  10000            number of images
    0008     32 bit integer  28               number of rows
    0012     32 bit integer  28               number of columns
    0016     unsigned byte   ??               pixel
    0017     unsigned byte   ??               pixel
    ........
    xxxx     unsigned byte   ??               pixel
    Pixels are organized row-wise. Pixel values are 0 to 255. 0 means background (white), 255 means foreground (black).
    :param idx_ubyte_file: idx文件路径
    :return: n*row*col维np.array对象,n为图片数量
    """
    return decode_idx3_ubyte(idx_ubyte_file)


def load_test_labels(idx_ubyte_file=test_labels_idx1_ubyte_file):
    """
    TEST SET LABEL FILE (t10k-labels-idx1-ubyte):
    [offset] [type]          [value]          [description]
    0000     32 bit integer  0x00000801(2049) magic number (MSB first)
    0004     32 bit integer  10000            number of items
    0008     unsigned byte   ??               label
    0009     unsigned byte   ??               label
    ........
    xxxx     unsigned byte   ??               label
    The labels values are 0 to 9.
    :param idx_ubyte_file: idx文件路径
    :return: n*1维np.array对象,n为图片数量
    """
    return decode_idx1_ubyte(idx_ubyte_file)


if __name__ == '__main__':

    train_images = load_train_images()
    train_labels = load_train_labels()
    test_images = load_test_images()
    test_labels = load_test_labels()

    pass

    # 查看前十个数据及其标签以读取是否正确
    for i in range(10):
        print(train_labels[i])

        img = train_images[i]
        img = np.transpose(img, (1, 2, 0))

        cv2.namedWindow('img')
        cv2.imshow('img', img)
        cv2.waitKey(100)

    print('done')

上面代码需要注意的是数据集的路径,需要修改成对应的路径。
image.png

运行python train.py

image.png

五、测试

from LeNet5 import LeNet5
import torch
from readMnist import *
from myDatast import Mnist
from torch.utils.data import DataLoader
import numpy as np
import cv2

test_images = load_test_images()
test_labels = load_test_labels()

testData = Mnist(test_images, test_labels)
test_data = DataLoader(dataset=testData, batch_size=1, shuffle=True)

lenet5 = LeNet5()
lenet5.load_state_dict(torch.load('lenet5.pth'))
lenet5.eval()

showimg = True
js = 0
for i, (img, id) in enumerate(test_data):

    img = img.float()
    outid = lenet5(img)

    oid = torch.argmax(outid)
    if oid == id:
        js = js + 1

    if showimg == True:
        img = img.numpy()
        img = np.squeeze(img)

        id = id.numpy()
        id = np.squeeze(id)
        id = np.int32(id)

        oid = oid.numpy()
        oid = np.squeeze(oid)

        maxv = np.max(img)
        minv = np.min(img)

        img = (img - minv) / (maxv - minv)

        cv2.namedWindow("img", 0)
        cv2.imshow("img", img)

        title = "img, predicted value:{},truth value:{}".format(oid, id)
        cv2.setWindowTitle("img",title)

        cv2.waitKey(1)

print('准确率:{:.6f}'.format(js / (i + 1)))

测试结果准确率达到0.986基本达到要求

image.png

相关文章
|
2天前
|
人工智能 物联网
如何将Together AI上基于Qwen2-7B训练的模型部署到ModelScope平台
如何将Together AI上基于Qwen2-7B训练的模型部署到ModelScope平台
35 10
|
2天前
|
机器学习/深度学习 存储 人工智能
【科普向】我们所说的AI模型训练到底在训练什么?
人工智能(AI)模型训练类似于厨师通过反复实践来掌握烹饪技巧。它通过大量数据输入,自动优化内部参数(如神经网络中的权重和偏置),以最小化预测误差或损失函数,使模型在面对新数据时更加准确。训练过程包括前向传播、计算损失、反向传播和更新权重等步骤,最终生成权重文件保存模型参数,用于后续的应用和部署。理解生物神经网络的工作原理为人工神经网络的设计提供了灵感,后者广泛应用于图像识别、自然语言处理等领域。
|
1月前
|
机器学习/深度学习 存储 人工智能
【AI系统】感知量化训练 QAT
本文介绍感知量化训练(QAT)流程,旨在减少神经网络从FP32量化至INT8时的精度损失。通过在模型中插入伪量化节点(FakeQuant)模拟量化误差,并在训练中最小化这些误差,使模型适应量化环境。文章还探讨了伪量化节点的作用、正向与反向传播处理、TensorRT中的QAT模型高效推理,以及QAT与PTQ的对比,提供了实践技巧,如从良好校准的PTQ模型开始、采用余弦退火学习率计划等。
81 2
【AI系统】感知量化训练 QAT
|
1月前
|
机器学习/深度学习 存储 人工智能
【AI系统】训练后量化与部署
本文详细介绍了训练后量化技术,涵盖动态和静态量化方法,旨在将模型权重和激活从浮点数转换为整数,以优化模型大小和推理速度。通过KL散度等校准方法和量化粒度控制,文章探讨了如何平衡模型精度与性能,同时提供了端侧量化推理部署的具体实现步骤和技术技巧。
47 1
【AI系统】训练后量化与部署
|
10天前
|
人工智能 智能硬件
SPAR:智谱 AI 推出自我博弈训练框架,基于生成者和完善者两个角色的互动,提升了执行准确度和自我完善能力
SPAR 是智谱团队推出的自我博弈训练框架,旨在提升大型语言模型在指令遵循方面的能力,通过生成者和完善者的互动以及树搜索技术优化模型响应。
25 0
SPAR:智谱 AI 推出自我博弈训练框架,基于生成者和完善者两个角色的互动,提升了执行准确度和自我完善能力
|
13天前
|
人工智能 自然语言处理 搜索推荐
Open Notebook:开源 AI 笔记工具,支持多种文件格式,自动转播客和生成总结,集成搜索引擎等功能
Open Notebook 是一款开源的 AI 笔记工具,支持多格式笔记管理,并能自动将笔记转换为博客或播客,适用于学术研究、教育、企业知识管理等多个场景。
75 0
Open Notebook:开源 AI 笔记工具,支持多种文件格式,自动转播客和生成总结,集成搜索引擎等功能
|
30天前
|
人工智能 PyTorch 测试技术
【AI系统】并行训练基本介绍
分布式训练通过将任务分配至多个节点,显著提升模型训练效率与精度。本文聚焦PyTorch2.0中的分布式训练技术,涵盖数据并行、模型并行及混合并行等策略,以及DDP、RPC等核心组件的应用,旨在帮助开发者针对不同场景选择最合适的训练方式,实现高效的大模型训练。
62 8
|
3月前
|
Python 机器学习/深度学习 人工智能
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
【10月更文挑战第1天】本文通过构建一个简单的强化学习环境,演示了如何创建和训练智能体以完成特定任务。我们使用Python、OpenAI Gym和PyTorch搭建了一个基础的智能体,使其学会在CartPole-v1环境中保持杆子不倒。文中详细介绍了环境设置、神经网络构建及训练过程。此实战案例有助于理解智能体的工作原理及基本训练方法,为更复杂应用奠定基础。首先需安装必要库: ```bash pip install gym torch ``` 接着定义环境并与之交互,实现智能体的训练。通过多个回合的试错学习,智能体逐步优化其策略。这一过程虽从基础做起,但为后续研究提供了良好起点。
259 4
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
|
2月前
|
机器学习/深度学习 存储 人工智能
【AI系统】谷歌 TPU v2 训练芯片
2017年,谷歌推出TPU v2,专为神经网络训练设计,标志着从推理转向训练的重大转变。TPU v2引入多项创新,包括Vector Memory、Vector Unit、MXU及HBM内存,以应对训练中数据并行、计算复杂度高等挑战。其高效互联技术构建了TPU v2超级计算机,显著提升大规模模型训练的效率和性能。
52 0
|
4月前
|
机器学习/深度学习 人工智能 PyTorch
AI计算机视觉笔记三十二:LPRNet车牌识别
LPRNet是一种基于Pytorch的高性能、轻量级车牌识别框架,适用于中国及其他国家的车牌识别。该网络无需对字符进行预分割,采用端到端的轻量化设计,结合了squeezenet和inception的思想。其创新点在于去除了RNN,仅使用CNN与CTC Loss,并通过特定的卷积模块提取上下文信息。环境配置包括使用CPU开发板和Autodl训练环境。训练和测试过程需搭建虚拟环境并安装相关依赖,执行训练和测试脚本时可能遇到若干错误,需相应调整代码以确保正确运行。使用官方模型可获得较高的识别准确率,自行训练时建议增加训练轮数以提升效果。
下一篇
开通oss服务